Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):963–970. doi: 10.1042/BJ20021767

beta-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase.

Peter J M Steenbakkers 1, Harry R Harhangi 1, Mirjam W Bosscher 1, Marlous M C van der Hooft 1, Jan T Keltjens 1, Chris van der Drift 1, Godfried D Vogels 1, Huub J M op den Camp 1
PMCID: PMC1223235  PMID: 12485115

Abstract

The cellulosomes of anaerobic fungi convert crystalline cellulose solely into glucose, in contrast with bacterial cellulosomes which produce cellobiose. Previously, a beta-glucosidase was identified in the cellulosome of Piromyces sp. strain E2 by zymogram analysis, which represented approx. 25% of the extracellular beta-glucosidase activity. To identify the component in the fungal cellulosome responsible for the beta-glucosidase activity, immunoscreening with anti-cellulosome antibodies was used to isolate the corresponding gene. A 2737 bp immunoclone was isolated from a cDNA library. The clone encoded an extracellular protein containing a eukaryotic family 3 glycoside hydrolase domain homologue and was therefore named cel3A. The C-terminal end of the encoded Cel3A protein consisted of an auxiliary domain and three fungal dockerins, typical for cellulosome components. The Cel3A catalytic domain was expressed in Escherichia coli BL21 and purified. Biochemical analyses of the recombinant protein showed that the Cel3A catalytic domain was specific for beta-glucosidic bonds and functioned as an exoglucohydrolase on soluble substrates as well as cellulose. Comparison of the apparent K (m) and K (i) values of heterologous Cel3A and the fungal cellulosome for p -nitrophenyl-beta-D-glucopyranoside and D-glucono-1,5-delta-lactone respectively indicated that cel3A encodes the beta-glucosidase activity of the Piromyces sp. strain E2 cellulosome.

Full Text

The Full Text of this article is available as a PDF (407.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhmanova A., Voncken F. G., Harhangi H., Hosea K. M., Vogels G. D., Hackstein J. H. Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2. Mol Microbiol. 1998 Dec;30(5):1017–1027. doi: 10.1046/j.1365-2958.1998.01130.x. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer E. A., Chanzy H., Lamed R., Shoham Y. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol. 1998 Oct;8(5):548–557. doi: 10.1016/s0959-440x(98)80143-7. [DOI] [PubMed] [Google Scholar]
  4. Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235–242. doi: 10.1093/nar/28.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brodskii L. I., Ivanov V. V., Kalaidzidis Ia L., Leontovich A. M., Nikolaev V. K., Feranchuk S. I., Drachev V. A. GeneBee-NET: Baziruiushchiisia v seti Internet server po analizu struktur biopolimerov. Biokhimiia. 1995 Aug;60(8):1221–1230. [PubMed] [Google Scholar]
  6. Chir Jiunly, Withers Stephen, Wan Chin-Feng, Li Yaw-Kuen. Identification of the two essential groups in the family 3 beta-glucosidase from Flavobacterium meningosepticum by labelling and tandem mass spectrometric analysis. Biochem J. 2002 Aug 1;365(Pt 3):857–863. doi: 10.1042/BJ20020186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dan S., Marton I., Dekel M., Bravdo B. A., He S., Withers S. G., Shoseyov O. Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger beta-glucosidase. J Biol Chem. 2000 Feb 18;275(7):4973–4980. doi: 10.1074/jbc.275.7.4973. [DOI] [PubMed] [Google Scholar]
  8. Dijkerman R., Op den Camp H. J., Van der Drift C., Vogels G. D. The role of the cellulolytic high molecular mass (HMM) complex of the anaerobic fungus Piromyces sp. strain E2 in the hydrolysis of microcrystalline cellulose. Arch Microbiol. 1997 Feb-Mar;167(2-3):137–142. [PubMed] [Google Scholar]
  9. Dijkerman R., Vervuren M. B., Op Den Camp H. J., van der Drift C. Adsorption characteristics of cellulolytic enzymes from the anaerobic fungus Piromyces sp. strain E2 on microcrystalline cellulose. Appl Environ Microbiol. 1996 Jan;62(1):20–25. doi: 10.1128/aem.62.1.20-25.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doi R. H., Tamaru Y. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem Rec. 2001;1(1):24–32. doi: 10.1002/1528-0691(2001)1:1<24::AID-TCR5>3.0.CO;2-W. [DOI] [PubMed] [Google Scholar]
  11. Eberhardt R. Y., Gilbert H. J., Hazlewood G. P. Primary sequence and enzymic properties of two modular endoglucanases, Cel5A and Cel45A, from the anaerobic fungus Piromyces equi. Microbiology. 2000 Aug;146(Pt 8):1999–2008. doi: 10.1099/00221287-146-8-1999. [DOI] [PubMed] [Google Scholar]
  12. Fanutti C., Ponyi T., Black G. W., Hazlewood G. P., Gilbert H. J. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J Biol Chem. 1995 Dec 8;270(49):29314–29322. doi: 10.1074/jbc.270.49.29314. [DOI] [PubMed] [Google Scholar]
  13. Fillingham I. J., Kroon P. A., Williamson G., Gilbert H. J., Hazlewood G. P. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Biochem J. 1999 Oct 1;343(Pt 1):215–224. [PMC free article] [PubMed] [Google Scholar]
  14. Harhangi Harry R., Steenbakkers Peter J. M., Akhmanova Anna, Jetten Mike S. M., van der Drift Chris, Op den Camp Huub J. M. A highly expressed family 1 beta-glucosidase with transglycosylation capacity from the anaerobic fungus Piromyces sp. E2. Biochim Biophys Acta. 2002 Apr 12;1574(3):293–303. doi: 10.1016/s0167-4781(01)00380-3. [DOI] [PubMed] [Google Scholar]
  15. Harvey A. J., Hrmova M., De Gori R., Varghese J. N., Fincher G. B. Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins. 2000 Nov 1;41(2):257–269. doi: 10.1002/1097-0134(20001101)41:2<257::aid-prot100>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  16. Henrissat B., Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochem J. 1996 Jun 1;316(Pt 2):695–696. doi: 10.1042/bj3160695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Henrissat B., Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol. 1997 Oct;7(5):637–644. doi: 10.1016/s0959-440x(97)80072-3. [DOI] [PubMed] [Google Scholar]
  18. Kruus K., Andreacchi A., Wang W. K., Wu J. H. Product inhibition of the recombinant CelS, an exoglucanase component of the Clostridium thermocellum cellulosome. Appl Microbiol Biotechnol. 1995 Dec;44(3-4):399–404. doi: 10.1007/BF00169935. [DOI] [PubMed] [Google Scholar]
  19. Li B., Renganathan V. Gene cloning and characterization of a novel cellulose-binding beta-glucosidase from Phanerochaete chrysosporium. Appl Environ Microbiol. 1998 Jul;64(7):2748–2754. doi: 10.1128/aem.64.7.2748-2754.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li X. L., Chen H., Ljungdahl L. G. Two cellulases, CelA and CelC, from the polycentric anaerobic fungus Orpinomyces strain PC-2 contain N-terminal docking domains for a cellulase-hemicellulase complex. Appl Environ Microbiol. 1997 Dec;63(12):4721–4728. doi: 10.1128/aem.63.12.4721-4728.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Yaw-Kuen, Chir Jiunly, Tanaka Shigeo, Chen Fong-Yi. Identification of the general acid/base catalyst of a family 3 beta-glucosidase from Flavobacterium meningosepticum. Biochemistry. 2002 Feb 26;41(8):2751–2759. doi: 10.1021/bi016049e. [DOI] [PubMed] [Google Scholar]
  22. Nielsen H., Brunak S., von Heijne G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 1999 Jan;12(1):3–9. doi: 10.1093/protein/12.1.3. [DOI] [PubMed] [Google Scholar]
  23. Raghothama S., Eberhardt R. Y., Simpson P., Wigelsworth D., White P., Hazlewood G. P., Nagy T., Gilbert H. J., Williamson M. P. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat Struct Biol. 2001 Sep;8(9):775–778. doi: 10.1038/nsb0901-775. [DOI] [PubMed] [Google Scholar]
  24. Rye C. S., Withers S. G. Glycosidase mechanisms. Curr Opin Chem Biol. 2000 Oct;4(5):573–580. doi: 10.1016/s1367-5931(00)00135-6. [DOI] [PubMed] [Google Scholar]
  25. Schwarz W. H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001 Sep;56(5-6):634–649. doi: 10.1007/s002530100710. [DOI] [PubMed] [Google Scholar]
  26. Shoham Y., Lamed R., Bayer E. A. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 1999 Jul;7(7):275–281. doi: 10.1016/s0966-842x(99)01533-4. [DOI] [PubMed] [Google Scholar]
  27. Steenbakkers P. J., Li X. L., Ximenes E. A., Arts J. G., Chen H., Ljungdahl L. G., Op Den Camp H. J. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol. 2001 Sep;183(18):5325–5333. doi: 10.1128/JB.183.18.5325-5333.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steenbakkers Peter J. M., Ubhayasekera Wimal, Goossen Harry J. A. M., van Lierop Erik M. H. M., van der Drift Chris, Vogels Godfried D., Mowbray Sherry L., Op den Camp Huub J. M. An intron-containing glycoside hydrolase family 9 cellulase gene encodes the dominant 90 kDa component of the cellulosome of the anaerobic fungus Piromyces sp. strain E2. Biochem J. 2002 Jul 1;365(Pt 1):193–204. doi: 10.1042/BJ20011866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Teunissen M. J., de Kort G. V., Op den Camp H. J., Huis in 't Veld J. H. Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. J Gen Microbiol. 1992 Aug;138(Pt 8):1657–1664. doi: 10.1099/00221287-138-8-1657. [DOI] [PubMed] [Google Scholar]
  30. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tuohy Maria G., Walsh Daniel J., Murray Patrick G., Claeyssens Marc, Cuffe Michelle M., Savage Angela V., Coughlan Michael P. Kinetic parameters and mode of action of the cellobiohydrolases produced by Talaromyces emersonii. Biochim Biophys Acta. 2002 Apr 29;1596(2):366–380. doi: 10.1016/s0167-4838(01)00308-9. [DOI] [PubMed] [Google Scholar]
  32. Varghese J. N., Hrmova M., Fincher G. B. Three-dimensional structure of a barley beta-D-glucan exohydrolase, a family 3 glycosyl hydrolase. Structure. 1999 Feb 15;7(2):179–190. doi: 10.1016/s0969-2126(99)80024-0. [DOI] [PubMed] [Google Scholar]
  33. Wood T. M., Wilson C. A. Studies on the capacity of the cellulase of the anaerobic rumen fungus Piromonas communis P to degrade hydrogen bond-ordered cellulose. Appl Microbiol Biotechnol. 1995 Jul;43(3):572–578. doi: 10.1007/BF00218468. [DOI] [PubMed] [Google Scholar]
  34. Zhou L., Xue G. P., Orpin C. G., Black G. W., Gilbert H. J., Hazlewood G. P. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Biochem J. 1994 Jan 15;297(Pt 2):359–364. doi: 10.1042/bj2970359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES