Abstract
Post-translational processing of proteins such as the Ras GTPases, which contain a C-terminal CaaX motif (where C stands for cysteine, a for aliphatic and X is one of several amino acids), includes prenylation, proteolytic removal of the C-terminal tripeptide and carboxy-methylation of the isoprenyl-cysteine residue. In the present study, we report the presence of two distinct CaaX-proteolytic activities in membrane extracts from Caenorhabditis elegans, which are sensitive to EDTA and Tos-Phe-CH(2)Cl (tosylphenylalanylchloromethane; 'TPCK') respectively. A protein similar to the mammalian and yeast farnesylated-proteins converting enzyme-1 (FACE-1)/Ste24p CaaX metalloprotease, encoded by a hypothetical gene (CeFACE-1/C04F12.10) found in C. elegans chromosome I, probably accounts for the EDTA-sensitive activity. An orthologue of FACE-2/Rce1p, the enzyme responsible for the proteolytic maturation of Ras oncoproteins and other prenylated substrates, probably accounts for the Tos-Phe-CH(2)Cl-sensitive activity, even though the gene for FACE-2/Rce1 has not been previously identified in this model organism. We have identified a previously overlooked gene in C. elegans chromosome V, which codes for a 266-amino-acid protein (CeFACE-2) with 30% sequence identity to human FACE-2/Rce1. We show that both CeFACE-1 and CeFACE-2 have the ability to promote production of the farnesylated yeast pheromone a -factor in vivo and to cleave a farnesylated peptide in vitro. These results indicate that CeFACE-1 and CeFACE-2 are bona fide CaaX proteases and support the evolutionary conservation of this proteolytic system in eukaryotes.
Full Text
The Full Text of this article is available as a PDF (431.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aspbury R. A., Prescott M. C., Fisher M. J., Rees H. H. Isoprenylation of polypeptides in the nematode Caenorhabditis elegans. Biochim Biophys Acta. 1998 Jun 15;1392(2-3):265–275. doi: 10.1016/s0005-2760(98)00040-x. [DOI] [PubMed] [Google Scholar]
- Bergo Martin O., Ambroziak Patricia, Gregory Cria, George Amanda, Otto James C., Kim Edward, Nagase Hiroki, Casey Patrick J., Balmain Allan, Young Stephen G. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol Cell Biol. 2002 Jan;22(1):171–181. doi: 10.1128/MCB.22.1.171-181.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal T. Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet. 1995 Apr;11(4):132–136. doi: 10.1016/s0168-9525(00)89026-5. [DOI] [PubMed] [Google Scholar]
- Boyartchuk V. L., Ashby M. N., Rine J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science. 1997 Mar 21;275(5307):1796–1800. doi: 10.1126/science.275.5307.1796. [DOI] [PubMed] [Google Scholar]
- Cox Adrienne D., Der Channing J. Farnesyltransferase inhibitors: promises and realities. Curr Opin Pharmacol. 2002 Aug;2(4):388–393. doi: 10.1016/s1471-4892(02)00181-9. [DOI] [PubMed] [Google Scholar]
- Dolence J. M., Steward L. E., Dolence E. K., Wong D. H., Poulter C. D. Studies with recombinant Saccharomyces cerevisiae CaaX prenyl protease Rce1p. Biochemistry. 2000 Apr 11;39(14):4096–4104. doi: 10.1021/bi9923611. [DOI] [PubMed] [Google Scholar]
- Elble R. A simple and efficient procedure for transformation of yeasts. Biotechniques. 1992 Jul;13(1):18–20. [PubMed] [Google Scholar]
- Freije J. M., Blay P., Pendás A. M., Cadiñanos J., Crespo P., López-Otín C. Identification and chromosomal location of two human genes encoding enzymes potentially involved in proteolytic maturation of farnesylated proteins. Genomics. 1999 Jun 15;58(3):270–280. doi: 10.1006/geno.1999.5834. [DOI] [PubMed] [Google Scholar]
- Fujimura-Kamada K., Nouvet F. J., Michaelis S. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J Cell Biol. 1997 Jan 27;136(2):271–285. doi: 10.1083/jcb.136.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georgopapadakou N. H., Hall C. C., Lambros T., Liu W., Watkins J. D. A radiometric assay for Ras-processing peptidase using an enzymatically radiolabeled peptide. Anal Biochem. 1994 May 1;218(2):273–277. doi: 10.1006/abio.1994.1178. [DOI] [PubMed] [Google Scholar]
- Kim E., Ambroziak P., Otto J. C., Taylor B., Ashby M., Shannon K., Casey P. J., Young S. G. Disruption of the mouse Rce1 gene results in defective Ras processing and mislocalization of Ras within cells. J Biol Chem. 1999 Mar 26;274(13):8383–8390. doi: 10.1074/jbc.274.13.8383. [DOI] [PubMed] [Google Scholar]
- Kumagai H., Kawamura Y., Yanagisawa K., Komano H. Identification of a human cDNA encoding a novel protein structurally related to the yeast membrane-associated metalloprotease, Ste24p. Biochim Biophys Acta. 1999 Feb 2;1426(3):468–474. doi: 10.1016/s0304-4165(98)00170-6. [DOI] [PubMed] [Google Scholar]
- Leung G. K., Schmidt W. K., Bergo M. O., Gavino B., Wong D. H., Tam A., Ashby M. N., Michaelis S., Young S. G. Biochemical studies of Zmpste24-deficient mice. J Biol Chem. 2001 Jun 8;276(31):29051–29058. doi: 10.1074/jbc.M102908200. [DOI] [PubMed] [Google Scholar]
- Michaelis S., Herskowitz I. The a-factor pheromone of Saccharomyces cerevisiae is essential for mating. Mol Cell Biol. 1988 Mar;8(3):1309–1318. doi: 10.1128/mcb.8.3.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nijbroek G. L., Michaelis S. Functional assays for analysis of yeast ste6 mutants. Methods Enzymol. 1998;292:193–212. doi: 10.1016/s0076-6879(98)92016-x. [DOI] [PubMed] [Google Scholar]
- Oldenburg K. R., Vo K. T., Michaelis S., Paddon C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 1997 Jan 15;25(2):451–452. doi: 10.1093/nar/25.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto J. C., Kim E., Young S. G., Casey P. J. Cloning and characterization of a mammalian prenyl protein-specific protease. J Biol Chem. 1999 Mar 26;274(13):8379–8382. doi: 10.1074/jbc.274.13.8379. [DOI] [PubMed] [Google Scholar]
- Pei J., Grishin N. V. Type II CAAX prenyl endopeptidases belong to a novel superfamily of putative membrane-bound metalloproteases. Trends Biochem Sci. 2001 May;26(5):275–277. doi: 10.1016/s0968-0004(01)01813-8. [DOI] [PubMed] [Google Scholar]
- Pendás Alberto M., Zhou Zhongjun, Cadiñanos Juan, Freije José M. P., Wang Jianming, Hultenby Kjell, Astudillo Aurora, Wernerson Annika, Rodríguez Francisco, Tryggvason Karl. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet. 2002 Apr 1;31(1):94–99. doi: 10.1038/ng871. [DOI] [PubMed] [Google Scholar]
- Powers S., Michaelis S., Broek D., Santa Anna S., Field J., Herskowitz I., Wigler M. RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell. 1986 Nov 7;47(3):413–422. doi: 10.1016/0092-8674(86)90598-2. [DOI] [PubMed] [Google Scholar]
- Schmidt W. K., Tam A., Fujimura-Kamada K., Michaelis S. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11175–11180. doi: 10.1073/pnas.95.19.11175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt W. K., Tam A., Michaelis S. Reconstitution of the Ste24p-dependent N-terminal proteolytic step in yeast a-factor biogenesis. J Biol Chem. 2000 Mar 3;275(9):6227–6233. doi: 10.1074/jbc.275.9.6227. [DOI] [PubMed] [Google Scholar]
- Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tam A., Nouvet F. J., Fujimura-Kamada K., Slunt H., Sisodia S. S., Michaelis S. Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol. 1998 Aug 10;142(3):635–649. doi: 10.1083/jcb.142.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tam A., Schmidt W. K., Michaelis S. The multispanning membrane protein Ste24p catalyzes CAAX proteolysis and NH2-terminal processing of the yeast a-factor precursor. J Biol Chem. 2001 Oct 1;276(50):46798–46806. doi: 10.1074/jbc.M106150200. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15;25(24):4876–4882. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang F. L., Casey P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. [DOI] [PubMed] [Google Scholar]
- Zhang Y., Nijbroek G., Sullivan M. L., McCracken A. A., Watkins S. C., Michaelis S., Brodsky J. L. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell. 2001 May;12(5):1303–1314. doi: 10.1091/mbc.12.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]