Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):927–934. doi: 10.1042/BJ20021870

Low levels of glutathione peroxidase 1 activity in selenium-deficient mouse liver affect c-Jun N-terminal kinase activation and p53 phosphorylation on Ser-15 in pro-oxidant-induced aponecrosis.

Wen-Hsing Cheng 1, Xinmin Zheng 1, Fred R Quimby 1, Carol A Roneker 1, Xin Gen Lei 1
PMCID: PMC1223242  PMID: 12492400

Abstract

Low levels of hepatic selenium (Se)-dependent glutathione peroxidase 1 (GPX1) activity have been shown to protect against oxidative liver injury in Se-deficient mice. The objective of the present study was to determine if the GPX1 protection was associated with phosphorylations of c-Jun N-terminal kinase (JNK) and p53 on Ser-15, two key signalling events in oxidative-stress-mediated cell death. Both Se-deficient GPX1 knockout (GPX1(-/-)) and wild-type (WT) mice ( n =64) were pretreated with an intraperitoneal injection of Se (as sodium selenite, 50 microg/kg body weight) 6 h before an intraperitoneal injection of paraquat (12.5 mg/kg). Liver aponecrosis, a mixed form of cell death sharing apoptosis and necrosis, was induced by paraquat in both groups of mice. However, its appearance was remarkably delayed and the severity was decreased by the repletion of hepatic GPX1 activity to <4% of the normal level by the Se injection in the WT mice, compared with that in the GPX1(-/-) mice. Consistently, the WT mice had lower levels of hepatic phospho-JNK, p53 and phospho-p53 (Ser-15) when compared with the GPX1(-/-) mice at 1-10 h after paraquat injection. Incubating liver homogenates with antibodies raised against JNK or phospho-JNK resulted in co-immunoprecipitation of phospho-p53 (Ser-15), and the amounts of the precipitated phospho-p53 were greater in the GPX1(-/-) mice when compared with that in the WT mice. The co-precipitated complex by the anti-phospho-JNK antibody was capable of phosphorylating intrinsic or extrinsic p53 on Ser-15. In conclusion, phospho-JNK may catalyse phosphorylation of p53 on Ser-15 in Se-deficient mouse liver under moderate oxidative stress, and attenuation of that cascade by low levels of GPX1 activity is associated with its protection against the pro-oxidant-induced liver aponecrosis.

Full Text

The Full Text of this article is available as a PDF (424.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banin S., Moyal L., Shieh S., Taya Y., Anderson C. W., Chessa L., Smorodinsky N. I., Prives C., Reiss Y., Shiloh Y. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science. 1998 Sep 11;281(5383):1674–1677. doi: 10.1126/science.281.5383.1674. [DOI] [PubMed] [Google Scholar]
  2. Brown K. M., Arthur J. R. Selenium, selenoproteins and human health: a review. Public Health Nutr. 2001 Apr;4(2B):593–599. doi: 10.1079/phn2001143. [DOI] [PubMed] [Google Scholar]
  3. Burk R. F., Hill K. E., Awad J. A., Morrow J. D., Kato T., Cockell K. A., Lyons P. R. Pathogenesis of diquat-induced liver necrosis in selenium-deficient rats: assessment of the roles of lipid peroxidation and selenoprotein P. Hepatology. 1995 Feb;21(2):561–569. [PubMed] [Google Scholar]
  4. Burk R. F., Lawrence R. A., Lane J. M. Liver necrosis and lipid peroxidation in the rat as the result of paraquat and diquat administration. Effect of selenium deficiency. J Clin Invest. 1980 May;65(5):1024–1031. doi: 10.1172/JCI109754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buschmann T., Potapova O., Bar-Shira A., Ivanov V. N., Fuchs S. Y., Henderson S., Fried V. A., Minamoto T., Alarcon-Vargas D., Pincus M. R. Jun NH2-terminal kinase phosphorylation of p53 on Thr-81 is important for p53 stabilization and transcriptional activities in response to stress. Mol Cell Biol. 2001 Apr;21(8):2743–2754. doi: 10.1128/MCB.21.8.2743-2754.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Canman C. E., Lim D. S., Cimprich K. A., Taya Y., Tamai K., Sakaguchi K., Appella E., Kastan M. B., Siliciano J. D. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science. 1998 Sep 11;281(5383):1677–1679. doi: 10.1126/science.281.5383.1677. [DOI] [PubMed] [Google Scholar]
  7. Chao C., Saito S., Anderson C. W., Appella E., Xu Y. Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11936–11941. doi: 10.1073/pnas.220252297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheng W. H., Ho Y. S., Ross D. A., Valentine B. A., Combs G. F., Lei X. G. Cellular glutathione peroxidase knockout mice express normal levels of selenium-dependent plasma and phospholipid hydroperoxide glutathione peroxidases in various tissues. J Nutr. 1997 Aug;127(8):1445–1450. doi: 10.1093/jn/127.8.1445. [DOI] [PubMed] [Google Scholar]
  9. Cheng W. H., Ho Y. S., Valentine B. A., Ross D. A., Combs G. F., Jr, Lei X. G. Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J Nutr. 1998 Jul;128(7):1070–1076. doi: 10.1093/jn/128.7.1070. [DOI] [PubMed] [Google Scholar]
  10. Cheng W. H., Valentine B. A., Lei X. G. High levels of dietary vitamin E do not replace cellular glutathione peroxidase in protecting mice from acute oxidative stress. J Nutr. 1999 Nov;129(11):1951–1957. doi: 10.1093/jn/129.11.1951. [DOI] [PubMed] [Google Scholar]
  11. Cheng W., Fu Y. X., Porres J. M., Ross D. A., Lei X. G. Selenium-dependent cellular glutathione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J. 1999 Aug;13(11):1467–1475. doi: 10.1096/fasebj.13.11.1467. [DOI] [PubMed] [Google Scholar]
  12. Crenesse D., Gugenheim J., Hornoy J., Tornieri K., Laurens M., Cambien B., Lenegrate G., Cursio R., De Souza G., Auberger P. Protein kinase activation by warm and cold hypoxia- reoxygenation in primary-cultured rat hepatocytes-JNK(1)/SAPK(1) involvement in apoptosis. Hepatology. 2000 Nov;32(5):1029–1036. doi: 10.1053/jhep.2000.19065. [DOI] [PubMed] [Google Scholar]
  13. Flohe L., Günzler W. A., Schock H. H. Glutathione peroxidase: a selenoenzyme. FEBS Lett. 1973 May 15;32(1):132–134. doi: 10.1016/0014-5793(73)80755-0. [DOI] [PubMed] [Google Scholar]
  14. Formigli L., Papucci L., Tani A., Schiavone N., Tempestini A., Orlandini G. E., Capaccioli S., Orlandini S. Z. Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 2000 Jan;182(1):41–49. doi: 10.1002/(SICI)1097-4652(200001)182:1<41::AID-JCP5>3.0.CO;2-7. [DOI] [PubMed] [Google Scholar]
  15. Fuchs S. Y., Adler V., Buschmann T., Yin Z., Wu X., Jones S. N., Ronai Z. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 1998 Sep 1;12(17):2658–2663. doi: 10.1101/gad.12.17.2658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fuchs S. Y., Adler V., Pincus M. R., Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10541–10546. doi: 10.1073/pnas.95.18.10541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ghose A., Fleming J., El-Bayoumy K., Harrison P. R. Enhanced sensitivity of human oral carcinomas to induction of apoptosis by selenium compounds: involvement of mitogen-activated protein kinase and Fas pathways. Cancer Res. 2001 Oct 15;61(20):7479–7487. [PubMed] [Google Scholar]
  18. Giaccia A. J., Kastan M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998 Oct 1;12(19):2973–2983. doi: 10.1101/gad.12.19.2973. [DOI] [PubMed] [Google Scholar]
  19. Gouaze Valerie, Andrieu-Abadie Nathalie, Cuvillier Olivier, Malagarie-Cazenave Sophie, Frisach Marie-Francoise, Mirault Marc-Edouard, Levade Thierry. Glutathione peroxidase-1 protects from CD95-induced apoptosis. J Biol Chem. 2002 Sep 6;277(45):42867–42874. doi: 10.1074/jbc.M203067200. [DOI] [PubMed] [Google Scholar]
  20. Hibi M., Lin A., Smeal T., Minden A., Karin M. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993 Nov;7(11):2135–2148. doi: 10.1101/gad.7.11.2135. [DOI] [PubMed] [Google Scholar]
  21. Higashimoto Y., Saito S., Tong X. H., Hong A., Sakaguchi K., Appella E., Anderson C. W. Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J Biol Chem. 2000 Jul 28;275(30):23199–23203. doi: 10.1074/jbc.M002674200. [DOI] [PubMed] [Google Scholar]
  22. Ho Y. S., Magnenat J. L., Bronson R. T., Cao J., Gargano M., Sugawara M., Funk C. D. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem. 1997 Jun 27;272(26):16644–16651. doi: 10.1074/jbc.272.26.16644. [DOI] [PubMed] [Google Scholar]
  23. Ichijo H. From receptors to stress-activated MAP kinases. Oncogene. 1999 Nov 1;18(45):6087–6093. doi: 10.1038/sj.onc.1203129. [DOI] [PubMed] [Google Scholar]
  24. Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol. 1998;60:619–642. doi: 10.1146/annurev.physiol.60.1.619. [DOI] [PubMed] [Google Scholar]
  25. Kwon Y., Shin B. S., Chung I. K. The p53 tumor suppressor stimulates the catalytic activity of human topoisomerase IIalpha by enhancing the rate of ATP hydrolysis. J Biol Chem. 2000 Jun 16;275(24):18503–18510. doi: 10.1074/jbc.M002081200. [DOI] [PubMed] [Google Scholar]
  26. Lanfear J., Fleming J., Wu L., Webster G., Harrison P. R. The selenium metabolite selenodiglutathione induces p53 and apoptosis: relevance to the chemopreventive effects of selenium? Carcinogenesis. 1994 Jul;15(7):1387–1392. doi: 10.1093/carcin/15.7.1387. [DOI] [PubMed] [Google Scholar]
  27. Levine A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997 Feb 7;88(3):323–331. doi: 10.1016/s0092-8674(00)81871-1. [DOI] [PubMed] [Google Scholar]
  28. Mailloux A., Grenet K., Bruneel A., Bénéteau-Burnat B., Vaubourdolle M., Baudin B. Anticancer drugs induce necrosis of human endothelial cells involving both oncosis and apoptosis. Eur J Cell Biol. 2001 Jun;80(6):442–449. doi: 10.1078/0171-9335-00171. [DOI] [PubMed] [Google Scholar]
  29. Miyashita T., Reed J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995 Jan 27;80(2):293–299. doi: 10.1016/0092-8674(95)90412-3. [DOI] [PubMed] [Google Scholar]
  30. Nomura K., Imai H., Koumura T., Arai M., Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem. 1999 Oct 8;274(41):29294–29302. doi: 10.1074/jbc.274.41.29294. [DOI] [PubMed] [Google Scholar]
  31. O'Brien T., Babcock G., Cornelius J., Dingeldein M., Talaska G., Warshawsky D., Mitchell K. A comparison of apoptosis and necrosis induced by hepatotoxins in HepG2 cells. Toxicol Appl Pharmacol. 2000 May 1;164(3):280–290. doi: 10.1006/taap.2000.8917. [DOI] [PubMed] [Google Scholar]
  32. Oda K., Arakawa H., Tanaka T., Matsuda K., Tanikawa C., Mori T., Nishimori H., Tamai K., Tokino T., Nakamura Y. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 2000 Sep 15;102(6):849–862. doi: 10.1016/s0092-8674(00)00073-8. [DOI] [PubMed] [Google Scholar]
  33. Park H. S., Park E., Kim M. S., Ahn K., Kim I. Y., Choi E. J. Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism. J Biol Chem. 2000 Jan 28;275(4):2527–2531. doi: 10.1074/jbc.275.4.2527. [DOI] [PubMed] [Google Scholar]
  34. Parnham M., Sies H. Ebselen: prospective therapy for cerebral ischaemia. Expert Opin Investig Drugs. 2000 Mar;9(3):607–619. doi: 10.1517/13543784.9.3.607. [DOI] [PubMed] [Google Scholar]
  35. Polyak K., Xia Y., Zweier J. L., Kinzler K. W., Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300–305. doi: 10.1038/38525. [DOI] [PubMed] [Google Scholar]
  36. Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973 Feb 9;179(4073):588–590. doi: 10.1126/science.179.4073.588. [DOI] [PubMed] [Google Scholar]
  37. Saito Shin'ichi, Goodarzi Aaron A., Higashimoto Yuichiro, Noda Yuka, Lees-Miller Susan P., Appella Ettore, Anderson Carl W. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem. 2002 Mar 1;277(15):12491–12494. doi: 10.1074/jbc.C200093200. [DOI] [PubMed] [Google Scholar]
  38. Sakaguchi K., Saito S., Higashimoto Y., Roy S., Anderson C. W., Appella E. Damage-mediated phosphorylation of human p53 threonine 18 through a cascade mediated by a casein 1-like kinase. Effect on Mdm2 binding. J Biol Chem. 2000 Mar 31;275(13):9278–9283. doi: 10.1074/jbc.275.13.9278. [DOI] [PubMed] [Google Scholar]
  39. She Q. B., Chen N., Dong Z. ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem. 2000 Jul 7;275(27):20444–20449. doi: 10.1074/jbc.M001020200. [DOI] [PubMed] [Google Scholar]
  40. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  41. Shisler J. L., Senkevich T. G., Berry M. J., Moss B. Ultraviolet-induced cell death blocked by a selenoprotein from a human dermatotropic poxvirus. Science. 1998 Jan 2;279(5347):102–105. doi: 10.1126/science.279.5347.102. [DOI] [PubMed] [Google Scholar]
  42. Siliciano J. D., Canman C. E., Taya Y., Sakaguchi K., Appella E., Kastan M. B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997 Dec 15;11(24):3471–3481. doi: 10.1101/gad.11.24.3471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stewart M. S., Spallholz J. E., Neldner K. H., Pence B. C. Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radic Biol Med. 1999 Jan;26(1-2):42–48. doi: 10.1016/s0891-5849(98)00147-6. [DOI] [PubMed] [Google Scholar]
  44. Tournier C., Hess P., Yang D. D., Xu J., Turner T. K., Nimnual A., Bar-Sagi D., Jones S. N., Flavell R. A., Davis R. J. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000 May 5;288(5467):870–874. doi: 10.1126/science.288.5467.870. [DOI] [PubMed] [Google Scholar]
  45. Xiang J., Chao D. T., Korsmeyer S. J. BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14559–14563. doi: 10.1073/pnas.93.25.14559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yang D. D., Kuan C. Y., Whitmarsh A. J., Rincón M., Zheng T. S., Davis R. J., Rakic P., Flavell R. A. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature. 1997 Oct 23;389(6653):865–870. doi: 10.1038/39899. [DOI] [PubMed] [Google Scholar]
  47. Yang Y., Cheng J. Z., Singhal S. S., Saini M., Pandya U., Awasthi S., Awasthi Y. C. Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem. 2001 Mar 7;276(22):19220–19230. doi: 10.1074/jbc.M100551200. [DOI] [PubMed] [Google Scholar]
  48. Yoon Sang-Oh, Kim Moon-Moo, Park Soo-Jin, Kim Dohoon, Chung Jongkuleong, Chung An-Sik. Selenite suppresses hydrogen peroxide-induced cell apoptosis through inhibition of ASK1/JNK and activation of PI3-K/Akt pathways. FASEB J. 2001 Nov 14;16(1):111–113. doi: 10.1096/fj.01-0398fje. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES