Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Mar 15;370(Pt 3):829–838. doi: 10.1042/BJ20021566

Photolabelling the rat urotensin II/GPR14 receptor identifies a ligand-binding site in the fourth transmembrane domain.

Antony A Boucard 1, Simon S Sauvé 1, Gaétan Guillemette 1, Emanuel Escher 1, Richard Leduc 1
PMCID: PMC1223243  PMID: 12495432

Abstract

A urotensin II (U-II) peptide analogue containing the photoreactive p -benzoyl-L-phenylalanine (Bz-Phe) in the sixth position was used to identify ligand-binding sites of the rat U-II receptor, also known as GPR14. [Bz-Phe(6)]U-II bound the receptor expressed in COS-7 cells with high affinity (IC(50) 0.7 nM) and was as potent as U-II in the agonist-induced production of inositol phosphate. Photolabelling of the U-II receptor with (125)I-[Bz-Phe(6)]U-II resulted in the specific formation of a glycosylated (125)I-[Bz-Phe(6)]U-II-U-II receptor complex of 60 kDa. Digestion of the 60 kDa complex with endoproteinase Glu-C generated a fragment of 17 kDa circumscribing the labelled fragment to residues 148-286. Digestion of the ligand-receptor complex with endoproteinase Arg-C produced a short peptide of 4 kDa corresponding to fragments 125-148, 167-192 or 210-233. CNBr treatment of the endoproteinase-Glu-C and -Arg-C fragments yielded 2 kDa fragments, defining the labelling site to methionine residues 184/185 of the fourth transmembrane domain. Photolabelling of two mutant receptors, M184L/M185L and M184A/M185A, led to a significant decrease in the overall yield of covalent labelling. Taken together, our results indicate that position 6 of U-II normally occupied by phenylalanine would interact with Met(184) and/or Met(185) of the fourth transmembrane domain of the U-II receptor. This information should be of significant value in the study of the interactions between U-II and its cognate receptor.

Full Text

The Full Text of this article is available as a PDF (367.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames R. S., Sarau H. M., Chambers J. K., Willette R. N., Aiyar N. V., Romanic A. M., Louden C. S., Foley J. J., Sauermelch C. F., Coatney R. W. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature. 1999 Sep 16;401(6750):282–286. doi: 10.1038/45809. [DOI] [PubMed] [Google Scholar]
  2. Behar V., Bisello A., Bitan G., Rosenblatt M., Chorev M. Photoaffinity cross-linking identifies differences in the interactions of an agonist and an antagonist with the parathyroid hormone/parathyroid hormone-related protein receptor. J Biol Chem. 2000 Jan 7;275(1):9–17. doi: 10.1074/jbc.275.1.9. [DOI] [PubMed] [Google Scholar]
  3. Bern H. A., Pearson D., Larson B. A., Nishioka R. S. Neurohormones from fish tails: the caudal neurosecretory system. I. "Urophysiology" and the caudal neurosecretory system of fishes. Recent Prog Horm Res. 1985;41:533–552. doi: 10.1016/b978-0-12-571141-8.50016-0. [DOI] [PubMed] [Google Scholar]
  4. Bhaskaran R., Arunkumar A. I., Yu C. NMR and dynamical simulated annealing studies on the solution conformation of urotensin II. Biochim Biophys Acta. 1994 Mar 2;1199(2):115–122. doi: 10.1016/0304-4165(94)90105-8. [DOI] [PubMed] [Google Scholar]
  5. Boucard A. A., Wilkes B. C., Laporte S. A., Escher E., Guillemette G., Leduc R. Photolabeling identifies position 172 of the human AT(1) receptor as a ligand contact point: receptor-bound angiotensin II adopts an extended structure. Biochemistry. 2000 Aug 15;39(32):9662–9670. doi: 10.1021/bi000597v. [DOI] [PubMed] [Google Scholar]
  6. Bremer A. A., Leeman S. E., Boyd N. D. The common C-terminal sequences of substance P and neurokinin A contact the same region of the NK-1 receptor. FEBS Lett. 2000 Dec 1;486(1):43–48. doi: 10.1016/s0014-5793(00)02228-6. [DOI] [PubMed] [Google Scholar]
  7. Conlon J. M. Singular contributions of fish neuroendocrinology to mammalian regulatory peptide research. Regul Pept. 2000 Sep 25;93(1-3):3–12. doi: 10.1016/s0167-0115(00)00172-5. [DOI] [PubMed] [Google Scholar]
  8. Coulie B., Matsuura B., Dong M., Hadac E. M., Pinon D. I., Feighner S. D., Howard A. D., Miller L. J. Identification of peptide ligand-binding domains within the human motilin receptor using photoaffinity labeling. J Biol Chem. 2001 Jul 18;276(38):35518–35522. doi: 10.1074/jbc.M104489200. [DOI] [PubMed] [Google Scholar]
  9. Coulouarn Y., Jégou S., Tostivint H., Vaudry H., Lihrmann I. Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors. FEBS Lett. 1999 Aug 20;457(1):28–32. doi: 10.1016/s0014-5793(99)01003-0. [DOI] [PubMed] [Google Scholar]
  10. Coulouarn Y., Lihrmann I., Jegou S., Anouar Y., Tostivint H., Beauvillain J. C., Conlon J. M., Bern H. A., Vaudry H. Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15803–15808. doi: 10.1073/pnas.95.26.15803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davenport A. P., Maguire J. J. Urotensin II: fish neuropeptide catches orphan receptor. Trends Pharmacol Sci. 2000 Mar;21(3):80–82. doi: 10.1016/s0165-6147(00)01449-8. [DOI] [PubMed] [Google Scholar]
  12. Deraët M., Rihakova L., Boucard A., Pèrodin J., Sauvé S., Mathieu A. P., Guillemette G., Leduc R., Lavigne P., Escher E. Angiotensin II is bound to both receptors AT1 and AT2, parallel to the transmembrane domains and in an extended form. Can J Physiol Pharmacol. 2002 May;80(5):418–425. doi: 10.1139/y02-060. [DOI] [PubMed] [Google Scholar]
  13. Dormán G., Prestwich G. D. Benzophenone photophores in biochemistry. Biochemistry. 1994 May 17;33(19):5661–5673. doi: 10.1021/bi00185a001. [DOI] [PubMed] [Google Scholar]
  14. Dunham T. D., Farrens D. L. Conformational changes in rhodopsin. Movement of helix f detected by site-specific chemical labeling and fluorescence spectroscopy. J Biol Chem. 1999 Jan 15;274(3):1683–1690. doi: 10.1074/jbc.274.3.1683. [DOI] [PubMed] [Google Scholar]
  15. Farrens D. L., Altenbach C., Yang K., Hubbell W. L., Khorana H. G. Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science. 1996 Nov 1;274(5288):768–770. doi: 10.1126/science.274.5288.768. [DOI] [PubMed] [Google Scholar]
  16. Flohr Stefanie, Kurz Michael, Kostenis Evi, Brkovich Alexandre, Fournier Alain, Klabunde Thomas. Identification of nonpeptidic urotensin II receptor antagonists by virtual screening based on a pharmacophore model derived from structure-activity relationships and nuclear magnetic resonance studies on urotensin II. J Med Chem. 2002 Apr 25;45(9):1799–1805. doi: 10.1021/jm0111043. [DOI] [PubMed] [Google Scholar]
  17. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  18. Greenberg Z., Bisello A., Mierke D. F., Rosenblatt M., Chorev M. Mapping the bimolecular interface of the parathyroid hormone (PTH)-PTH1 receptor complex: spatial proximity between Lys(27) (of the hormone principal binding domain) and leu(261) (of the first extracellular loop) of the human PTH1 receptor. Biochemistry. 2000 Jul 18;39(28):8142–8152. doi: 10.1021/bi000195n. [DOI] [PubMed] [Google Scholar]
  19. Itoh H., McMaster D., Lederis K. Functional receptors for fish neuropeptide urotensin II in major rat arteries. Eur J Pharmacol. 1988 Apr 27;149(1-2):61–66. doi: 10.1016/0014-2999(88)90042-8. [DOI] [PubMed] [Google Scholar]
  20. Kage R., Leeman S. E., Krause J. E., Costello C. E., Boyd N. D. Identification of methionine as the site of covalent attachment of a p-benzoyl-phenylalanine-containing analogue of substance P on the substance P (NK-1) receptor. J Biol Chem. 1996 Oct 18;271(42):25797–25800. doi: 10.1074/jbc.271.42.25797. [DOI] [PubMed] [Google Scholar]
  21. Lanctôt P. M., Leclerc P. C., Escher E., Leduc R., Guillemette G. Role of N-glycosylation in the expression and functional properties of human AT1 receptor. Biochemistry. 1999 Jul 6;38(27):8621–8627. doi: 10.1021/bi9830516. [DOI] [PubMed] [Google Scholar]
  22. Laporte S. A., Boucard A. A., Servant G., Guillemette G., Leduc R., Escher E. Determination of peptide contact points in the human angiotensin II type I receptor (AT1) with photosensitive analogs of angiotensin II. Mol Endocrinol. 1999 Apr;13(4):578–586. doi: 10.1210/mend.13.4.0270. [DOI] [PubMed] [Google Scholar]
  23. Lequin Olivier, Bolbach Gérard, Frank Fabrice, Convert Odile, Girault-Lagrange Sophie, Chassaing Gérard, Lavielle Solange, Sagan Sandrine. Involvement of the second extracellular loop (E2) of the neurokinin-1 receptor in the binding of substance P. Photoaffinity labeling and modeling studies. J Biol Chem. 2002 Apr 11;277(25):22386–22394. doi: 10.1074/jbc.M110614200. [DOI] [PubMed] [Google Scholar]
  24. Li S., Liu X., Min L., Ascoli M. Mutations of the second extracellular loop of the human lutropin receptor emphasize the importance of receptor activation and de-emphasize the importance of receptor phosphorylation in agonist-induced internalization. J Biol Chem. 2000 Dec 15;276(11):7968–7973. doi: 10.1074/jbc.M010482200. [DOI] [PubMed] [Google Scholar]
  25. MacLean M. R., Alexander D., Stirrat A., Gallagher M., Douglas S. A., Ohlstein E. H., Morecroft I., Polland K. Contractile responses to human urotensin-II in rat and human pulmonary arteries: effect of endothelial factors and chronic hypoxia in the rat. Br J Pharmacol. 2000 May;130(2):201–204. doi: 10.1038/sj.bjp.0703314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mannstadt M., Luck M. D., Gardella T. J., Jüppner H. Evidence for a ligand interaction site at the amino-terminus of the parathyroid hormone (PTH)/PTH-related protein receptor from cross-linking and mutational studies. J Biol Chem. 1998 Jul 3;273(27):16890–16896. doi: 10.1074/jbc.273.27.16890. [DOI] [PubMed] [Google Scholar]
  27. Marchese A., Heiber M., Nguyen T., Heng H. H., Saldivia V. R., Cheng R., Murphy P. M., Tsui L. C., Shi X., Gregor P. Cloning and chromosomal mapping of three novel genes, GPR9, GPR10, and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics. 1995 Sep 20;29(2):335–344. doi: 10.1006/geno.1995.9996. [DOI] [PubMed] [Google Scholar]
  28. Mori M., Sugo T., Abe M., Shimomura Y., Kurihara M., Kitada C., Kikuchi K., Shintani Y., Kurokawa T., Onda H. Urotensin II is the endogenous ligand of a G-protein-coupled orphan receptor, SENR (GPR14). Biochem Biophys Res Commun. 1999 Nov;265(1):123–129. doi: 10.1006/bbrc.1999.1640. [DOI] [PubMed] [Google Scholar]
  29. Nothacker H. P., Wang Z., McNeill A. M., Saito Y., Merten S., O'Dowd B., Duckles S. P., Civelli O. Identification of the natural ligand of an orphan G-protein-coupled receptor involved in the regulation of vasoconstriction. Nat Cell Biol. 1999 Oct;1(6):383–385. doi: 10.1038/14081. [DOI] [PubMed] [Google Scholar]
  30. Palczewski K., Kumasaka T., Hori T., Behnke C. A., Motoshima H., Fox B. A., Le Trong I., Teller D. C., Okada T., Stenkamp R. E. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739–745. doi: 10.1126/science.289.5480.739. [DOI] [PubMed] [Google Scholar]
  31. Phalipou S., Cotte N., Carnazzi E., Seyer R., Mahe E., Jard S., Barberis C., Mouillac B. Mapping peptide-binding domains of the human V1a vasopressin receptor with a photoactivatable linear peptide antagonist. J Biol Chem. 1997 Oct 17;272(42):26536–26544. doi: 10.1074/jbc.272.42.26536. [DOI] [PubMed] [Google Scholar]
  32. Piserchio Andrea, Shimizu Naoto, Gardella Thomas J., Mierke Dale F. Residue 19 of the parathyroid hormone: structural consequences. Biochemistry. 2002 Nov 5;41(44):13217–13223. doi: 10.1021/bi0261600. [DOI] [PubMed] [Google Scholar]
  33. Russell F. D., Molenaar P., O'Brien D. M. Cardiostimulant effects of urotensin-II in human heart in vitro. Br J Pharmacol. 2001 Jan;132(1):5–9. doi: 10.1038/sj.bjp.0703811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schwartz T. W., Rosenkilde M. M. Is there a 'lock' for all agonist 'keys' in 7TM receptors? Trends Pharmacol Sci. 1996 Jun;17(6):213–216. doi: 10.1016/0165-6147(96)10017-1. [DOI] [PubMed] [Google Scholar]
  35. Servant G., Laporte S. A., Leduc R., Escher E., Guillemette G. Identification of angiotensin II-binding domains in the rat AT2 receptor with photolabile angiotensin analogs. J Biol Chem. 1997 Mar 28;272(13):8653–8659. doi: 10.1074/jbc.272.13.8653. [DOI] [PubMed] [Google Scholar]
  36. Turek Joseph W., Halmos Thérêse, Sullivan Nora L., Antonakis Kostas, Le Breton Guy C. Mapping of a ligand-binding site for the human thromboxane A2 receptor protein. J Biol Chem. 2002 Mar 4;277(19):16791–16797. doi: 10.1074/jbc.M105872200. [DOI] [PubMed] [Google Scholar]
  37. Yan Elsa C. Y., Kazmi Manija A., De Soma, Chang Belinda S. W., Seibert Christoph, Marin Ethan P., Mathies Richard A., Sakmar Thomas P. Function of extracellular loop 2 in rhodopsin: glutamic acid 181 modulates stability and absorption wavelength of metarhodopsin II. Biochemistry. 2002 Mar 19;41(11):3620–3627. doi: 10.1021/bi0160011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES