Abstract
We have shown in a previous study that leukotriene D(4) (LTD(4)) signalling increases cell survival and proliferation in intestinal epithelial cells [Ohd, Wikström and Sjölander (2000) Gastroenterology 119, 1007-1018]. This is highly interesting since inflammatory conditions of the bowel are associated with an increased risk of developing colon cancer. The enzyme cyclo-oxygenase 2 (COX-2) is important in this context since it is up-regulated in colon cancer tissues and in tumour cell lines. Treatment with the COX-2-specific inhibitor N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide has been shown previously to cause apoptosis in intestinal epithelial cells. In the present study, we attempted to elucidate the underlying mechanisms and we can now show that a mitochondrial pathway is employed. Inhibition of COX-2 causes release of cytochrome c, as shown by both Western-blot and microscopy studies, and as with apoptosis, this is significantly decreased by LTD(4). Since previous studies showed increased Bcl-2 levels on LTD(4) stimulation, we further studied apoptotic regulation at the mitochondrial level. From this we could exclude the involvement of the anti-apoptotic protein Bcl-X(L) as well as its pro-apoptotic counterpart Bax, since they are not expressed. Furthermore, the activity of the pro-apoptotic protein Bad (Bcl-2/Bcl-X(L)-antagonist, causing cell death) was completely unaffected. However, inhibition of COX-2 caused cleavage of caspase 8 into a 41 kDa fragment associated with activation and caused the appearance of an activated 15 kDa fragment of Bid. This indicates that N -(2-cyclohexyloxy-4-nitrophenyl)methane sulphonamide-induced apoptosis is mediated by the activation of caspase 8, via generation of truncated Bid, and thereafter release of cytochrome c. Interestingly, LTD(4) not only reverses the effects induced by inhibition of COX-2 but also reduces the apoptotic potential by lowering the basal level of caspase 8 activation and truncated Bid generation.
Full Text
The Full Text of this article is available as a PDF (458.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Besnault L., Schrantz N., Auffredou M. T., Leca G., Bourgeade M. F., Vazquez A. B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein. J Immunol. 2001 Jul 15;167(2):733–740. doi: 10.4049/jimmunol.167.2.733. [DOI] [PubMed] [Google Scholar]
- Breitschopf K., Zeiher A. M., Dimmeler S. Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J Biol Chem. 2000 Jul 14;275(28):21648–21652. doi: 10.1074/jbc.M001083200. [DOI] [PubMed] [Google Scholar]
- Cao Yang, Prescott Stephen M. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol. 2002 Mar;190(3):279–286. doi: 10.1002/jcp.10068. [DOI] [PubMed] [Google Scholar]
- Desagher S., Osen-Sand A., Montessuit S., Magnenat E., Vilbois F., Hochmann A., Journot L., Antonsson B., Martinou J. C. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol Cell. 2001 Sep;8(3):601–611. doi: 10.1016/s1097-2765(01)00335-5. [DOI] [PubMed] [Google Scholar]
- Ekbom A., Helmick C., Zack M., Adami H. O. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med. 1990 Nov 1;323(18):1228–1233. doi: 10.1056/NEJM199011013231802. [DOI] [PubMed] [Google Scholar]
- Elder Douglas J. E., Halton Dawn E., Playle Laura C., Paraskeva Christos. The MEK/ERK pathway mediates COX-2-selective NSAID-induced apoptosis and induced COX-2 protein expression in colorectal carcinoma cells. Int J Cancer. 2002 May 20;99(3):323–327. doi: 10.1002/ijc.10330. [DOI] [PubMed] [Google Scholar]
- Futaki N., Takahashi S., Yokoyama M., Arai I., Higuchi S., Otomo S. NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins. 1994 Jan;47(1):55–59. doi: 10.1016/0090-6980(94)90074-4. [DOI] [PubMed] [Google Scholar]
- Grossmann J., Walther K., Artinger M., Kiessling S., Schölmerich J. Apoptotic signaling during initiation of detachment-induced apoptosis ("anoikis") of primary human intestinal epithelial cells. Cell Growth Differ. 2001 Mar;12(3):147–155. [PubMed] [Google Scholar]
- Hague A., Bracey T. S., Hicks D. J., Reed J. C., Paraskeva C. Decreased levels of p26-Bcl-2, but not p30 phosphorylated Bcl-2, precede TGFbeta1-induced apoptosis in colorectal adenoma cells. Carcinogenesis. 1998 Sep;19(9):1691–1695. doi: 10.1093/carcin/19.9.1691. [DOI] [PubMed] [Google Scholar]
- Han Z., Pantazis P., Wyche J. H., Kouttab N., Kidd V. J., Hendrickson E. A. A Fas-associated death domain protein-dependent mechanism mediates the apoptotic action of non-steroidal anti-inflammatory drugs in the human leukemic Jurkat cell line. J Biol Chem. 2001 Aug 20;276(42):38748–38754. doi: 10.1074/jbc.M106214200. [DOI] [PubMed] [Google Scholar]
- Heise C. E., O'Dowd B. F., Figueroa D. J., Sawyer N., Nguyen T., Im D. S., Stocco R., Bellefeuille J. N., Abramovitz M., Cheng R. Characterization of the human cysteinyl leukotriene 2 receptor. J Biol Chem. 2000 Sep 29;275(39):30531–30536. doi: 10.1074/jbc.M003490200. [DOI] [PubMed] [Google Scholar]
- Horwitz R. J., McGill K. A., Busse W. W. The role of leukotriene modifiers in the treatment of asthma. Am J Respir Crit Care Med. 1998 May;157(5 Pt 1):1363–1371. doi: 10.1164/ajrccm.157.5.9706059. [DOI] [PubMed] [Google Scholar]
- Korsmeyer S. J., Wei M. C., Saito M., Weiler S., Oh K. J., Schlesinger P. H. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000 Dec;7(12):1166–1173. doi: 10.1038/sj.cdd.4400783. [DOI] [PubMed] [Google Scholar]
- Krajewska M., Moss S. F., Krajewski S., Song K., Holt P. R., Reed J. C. Elevated expression of Bcl-X and reduced Bak in primary colorectal adenocarcinomas. Cancer Res. 1996 May 15;56(10):2422–2427. [PubMed] [Google Scholar]
- Li M., Wu X., Xu X. C. Induction of apoptosis by cyclo-oxygenase-2 inhibitor NS398 through a cytochrome C-dependent pathway in esophageal cancer cells. Int J Cancer. 2001 Jul 15;93(2):218–223. doi: 10.1002/ijc.1322. [DOI] [PubMed] [Google Scholar]
- Li M., Wu X., Xu X. C. Induction of apoptosis in colon cancer cells by cyclooxygenase-2 inhibitor NS398 through a cytochrome c-dependent pathway. Clin Cancer Res. 2001 Apr;7(4):1010–1016. [PubMed] [Google Scholar]
- Li P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997 Nov 14;91(4):479–489. doi: 10.1016/s0092-8674(00)80434-1. [DOI] [PubMed] [Google Scholar]
- Liu X. H., Yao S., Kirschenbaum A., Levine A. C. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res. 1998 Oct 1;58(19):4245–4249. [PubMed] [Google Scholar]
- Lizcano J. M., Morrice N., Cohen P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J. 2000 Jul 15;349(Pt 2):547–557. doi: 10.1042/0264-6021:3490547. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 1998 Aug 21;94(4):481–490. doi: 10.1016/s0092-8674(00)81589-5. [DOI] [PubMed] [Google Scholar]
- Lynch K. R., O'Neill G. P., Liu Q., Im D. S., Sawyer N., Metters K. M., Coulombe N., Abramovitz M., Figueroa D. J., Zeng Z. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature. 1999 Jun 24;399(6738):789–793. doi: 10.1038/21658. [DOI] [PubMed] [Google Scholar]
- Mandic Aleksandra, Viktorsson Kristina, Strandberg Linda, Heiden Thomas, Hansson Johan, Linder Stig, Shoshan Maria C. Calpain-mediated Bid cleavage and calpain-independent Bak modulation: two separate pathways in cisplatin-induced apoptosis. Mol Cell Biol. 2002 May;22(9):3003–3013. doi: 10.1128/MCB.22.9.3003-3013.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohd John F., Nielsen Christian Kamp, Campbell Joan, Landberg Göran, Löfberg Helge, Sjölander Anita. Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology. 2003 Jan;124(1):57–70. doi: 10.1053/gast.2003.50011. [DOI] [PubMed] [Google Scholar]
- Paruchuri Sailaja, Hallberg Bengt, Juhas Maria, Larsson Christer, Sjölander Anita. Leukotriene D(4) activates MAPK through a Ras-independent but PKCepsilon-dependent pathway in intestinal epithelial cells. J Cell Sci. 2002 May 1;115(Pt 9):1883–1893. doi: 10.1242/jcs.115.9.1883. [DOI] [PubMed] [Google Scholar]
- Rosen K., Rak J., Jin J., Kerbel R. S., Newman M. J., Filmus J. Downregulation of the pro-apoptotic protein Bak is required for the ras-induced transformation of intestinal epithelial cells. Curr Biol. 1998 Dec 3;8(24):1331–1334. doi: 10.1016/s0960-9822(07)00564-7. [DOI] [PubMed] [Google Scholar]
- Rytömaa M., Martins L. M., Downward J. Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr Biol. 1999 Sep 23;9(18):1043–1046. doi: 10.1016/s0960-9822(99)80454-0. [DOI] [PubMed] [Google Scholar]
- Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
- Sheng H., Shao J., Kirkland S. C., Isakson P., Coffey R. J., Morrow J., Beauchamp R. D., DuBois R. N. Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. J Clin Invest. 1997 May 1;99(9):2254–2259. doi: 10.1172/JCI119400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheng H., Shao J., Morrow J. D., Beauchamp R. D., DuBois R. N. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998 Jan 15;58(2):362–366. [PubMed] [Google Scholar]
- Shimizu S., Narita M., Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 1999 Jun 3;399(6735):483–487. doi: 10.1038/20959. [DOI] [PubMed] [Google Scholar]
- Sjölander A., Grönroos E., Hammarström S., Andersson T. Leukotriene D4 and E4 induce transmembrane signaling in human epithelial cells. Single cell analysis reveals diverse pathways at the G-protein level for the influx and the intracellular mobilization of Ca2+. J Biol Chem. 1990 Dec 5;265(34):20976–20981. [PubMed] [Google Scholar]
- Smalley W. E., DuBois R. N. Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol. 1997;39:1–20. doi: 10.1016/s1054-3589(08)60067-8. [DOI] [PubMed] [Google Scholar]
- Vanderheyde N., Aksoy E., Amraoui Z., Vandenabeele P., Goldman M., Willems F. Tumoricidal activity of monocyte-derived dendritic cells: evidence for a caspase-8-dependent, Fas-associated death domain-independent mechanism. J Immunol. 2001 Oct 1;167(7):3565–3569. doi: 10.4049/jimmunol.167.7.3565. [DOI] [PubMed] [Google Scholar]
- Vane J. R., Botting R. M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med. 1998 Mar 30;104(3A):2S–22S. doi: 10.1016/s0002-9343(97)00203-9. [DOI] [PubMed] [Google Scholar]
- Virdee K., Parone P. A., Tolkovsky A. M. Phosphorylation of the pro-apoptotic protein BAD on serine 155, a novel site, contributes to cell survival. Curr Biol. 2000 Sep 21;10(18):1151–1154. doi: 10.1016/s0960-9822(00)00702-8. [DOI] [PubMed] [Google Scholar]
- Zha J., Harada H., Yang E., Jockel J., Korsmeyer S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L) Cell. 1996 Nov 15;87(4):619–628. doi: 10.1016/s0092-8674(00)81382-3. [DOI] [PubMed] [Google Scholar]
- Zhang L., Yu J., Park B. H., Kinzler K. W., Vogelstein B. Role of BAX in the apoptotic response to anticancer agents. Science. 2000 Nov 3;290(5493):989–992. doi: 10.1126/science.290.5493.989. [DOI] [PubMed] [Google Scholar]
