Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):15–27. doi: 10.1042/BJ20021637

Positive and negative regulation of T-cell activation through kinases and phosphatases.

Tomas Mustelin 1, Kjetil Taskén 1
PMCID: PMC1223257  PMID: 12485116

Abstract

The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.

Full Text

The Full Text of this article is available as a PDF (324.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aandahl E. M., Aukrust P., Skålhegg B. S., Müller F., Frøland S. S., Hansson V., Taskén K. Protein kinase A type I antagonist restores immune responses of T cells from HIV-infected patients. FASEB J. 1998 Jul;12(10):855–862. doi: 10.1096/fasebj.12.10.855. [DOI] [PubMed] [Google Scholar]
  2. Abraham N., Veillette A. Activation of p56lck through mutation of a regulatory carboxy-terminal tyrosine residue requires intact sites of autophosphorylation and myristylation. Mol Cell Biol. 1990 Oct;10(10):5197–5206. doi: 10.1128/mcb.10.10.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abraham R. T., Karnitz L. M., Secrist J. P., Leibson P. J. Signal transduction through the T-cell antigen receptor. Trends Biochem Sci. 1992 Oct;17(10):434–438. doi: 10.1016/0968-0004(92)90015-2. [DOI] [PubMed] [Google Scholar]
  4. Alonso A., Saxena M., Williams S., Mustelin T. Inhibitory role for dual specificity phosphatase VHR in T cell antigen receptor and CD28-induced Erk and Jnk activation. J Biol Chem. 2000 Nov 20;276(7):4766–4771. doi: 10.1074/jbc.M006497200. [DOI] [PubMed] [Google Scholar]
  5. Alonso Andres, Merlo Joseph J., Na Songqing, Kholod Natalya, Jaroszewski Lukasz, Kharitonenkov Alexei, Williams Scott, Godzik Adam, Posada James D., Mustelin Tomas. Inhibition of T cell antigen receptor signaling by VHR-related MKPX (VHX), a new dual specificity phosphatase related to VH1 related (VHR). J Biol Chem. 2001 Dec 3;277(7):5524–5528. doi: 10.1074/jbc.M107653200. [DOI] [PubMed] [Google Scholar]
  6. Alonso Andres, Rahmouni Souad, Williams Scott, van Stipdonk Marianne, Jaroszewski Lukasz, Godzik Adam, Abraham Robert T., Schoenberger Stephen P., Mustelin Tomas. Tyrosine phosphorylation of VHR phosphatase by ZAP-70. Nat Immunol. 2002 Nov 25;4(1):44–48. doi: 10.1038/ni856. [DOI] [PubMed] [Google Scholar]
  7. Altman A., Coggeshall K. M., Mustelin T. Molecular events mediating T cell activation. Adv Immunol. 1990;48:227–360. doi: 10.1016/s0065-2776(08)60756-7. [DOI] [PubMed] [Google Scholar]
  8. Amrein K. E., Sefton B. M. Mutation of a site of tyrosine phosphorylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4247–4251. doi: 10.1073/pnas.85.12.4247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Arpaia E., Shahar M., Dadi H., Cohen A., Roifman C. M. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking zap-70 kinase. Cell. 1994 Mar 11;76(5):947–958. doi: 10.1016/0092-8674(94)90368-9. [DOI] [PubMed] [Google Scholar]
  10. Barber E. K., Dasgupta J. D., Schlossman S. F., Trevillyan J. M., Rudd C. E. The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc Natl Acad Sci U S A. 1989 May;86(9):3277–3281. doi: 10.1073/pnas.86.9.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bergman M., Mustelin T., Oetken C., Partanen J., Flint N. A., Amrein K. E., Autero M., Burn P., Alitalo K. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 1992 Aug;11(8):2919–2924. doi: 10.1002/j.1460-2075.1992.tb05361.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Boerth N. J., Sadler J. J., Bauer D. E., Clements J. L., Gheith S. M., Koretzky G. A. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J Exp Med. 2000 Oct 2;192(7):1047–1058. doi: 10.1084/jem.192.7.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bottini Nunzio, Stefanini Lavinia, Williams Scott, Alonso Andres, Jascur Thomas, Abraham Robert T., Couture Clement, Mustelin Tomas. Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J Biol Chem. 2002 Apr 25;277(27):24220–24224. doi: 10.1074/jbc.M202885200. [DOI] [PubMed] [Google Scholar]
  14. Brdicka T., Pavlistová D., Leo A., Bruyns E., Korínek V., Angelisová P., Scherer J., Shevchenko A., Hilgert I., Cerný J. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med. 2000 May 1;191(9):1591–1604. doi: 10.1084/jem.191.9.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Brdicková N., Brdicka T., Andera L., Spicka J., Angelisová P., Milgram S. L., Horejsí V. Interaction between two adapter proteins, PAG and EBP50: a possible link between membrane rafts and actin cytoskeleton. FEBS Lett. 2001 Oct 26;507(2):133–136. doi: 10.1016/s0014-5793(01)02955-6. [DOI] [PubMed] [Google Scholar]
  16. Brockdorff J. L., Gu H., Mustelin T., Kaltoft K., Geisler C., Röpke C., Ødum N. Gab2 is phosphorylated on tyrosine upon interleukin-2/interleukin-15 stimulation in mycosis-fungoides-derived tumor T cells and associates inducibly with SHP-2 and Stat5a. Exp Clin Immunogenet. 2001;18(2):86–95. doi: 10.1159/000049187. [DOI] [PubMed] [Google Scholar]
  17. Brockdorff J., Williams S., Couture C., Mustelin T. Dephosphorylation of ZAP-70 and inhibition of T cell activation by activated SHP1. Eur J Immunol. 1999 Aug;29(8):2539–2550. doi: 10.1002/(SICI)1521-4141(199908)29:08<2539::AID-IMMU2539>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  18. Bu J. Y., Shaw A. S., Chan A. C. Analysis of the interaction of ZAP-70 and syk protein-tyrosine kinases with the T-cell antigen receptor by plasmon resonance. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5106–5110. doi: 10.1073/pnas.92.11.5106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bunnell S. C., Diehn M., Yaffe M. B., Findell P. R., Cantley L. C., Berg L. J. Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem. 2000 Jan 21;275(3):2219–2230. doi: 10.1074/jbc.275.3.2219. [DOI] [PubMed] [Google Scholar]
  20. Cahir McFarland E. D., Hurley T. R., Pingel J. T., Sefton B. M., Shaw A., Thomas M. L. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1402–1406. doi: 10.1073/pnas.90.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chan A. C., Dalton M., Johnson R., Kong G. H., Wang T., Thoma R., Kurosaki T. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 1995 Jun 1;14(11):2499–2508. doi: 10.1002/j.1460-2075.1995.tb07247.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chan A. C., Kadlecek T. A., Elder M. E., Filipovich A. H., Kuo W. L., Iwashima M., Parslow T. G., Weiss A. ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science. 1994 Jun 10;264(5165):1599–1601. doi: 10.1126/science.8202713. [DOI] [PubMed] [Google Scholar]
  23. Chan A. C., van Oers N. S., Tran A., Turka L., Law C. L., Ryan J. C., Clark E. A., Weiss A. Differential expression of ZAP-70 and Syk protein tyrosine kinases, and the role of this family of protein tyrosine kinases in TCR signaling. J Immunol. 1994 May 15;152(10):4758–4766. [PubMed] [Google Scholar]
  24. Charbonneau H., Tonks N. K., Kumar S., Diltz C. D., Harrylock M., Cool D. E., Krebs E. G., Fischer E. H., Walsh K. A. Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5252–5256. doi: 10.1073/pnas.86.14.5252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Cheng A. M., Negishi I., Anderson S. J., Chan A. C., Bolen J., Loh D. Y., Pawson T. The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9797–9801. doi: 10.1073/pnas.94.18.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Cheng A. M., Rowley B., Pao W., Hayday A., Bolen J. B., Pawson T. Syk tyrosine kinase required for mouse viability and B-cell development. Nature. 1995 Nov 16;378(6554):303–306. doi: 10.1038/378303a0. [DOI] [PubMed] [Google Scholar]
  27. Ching K. A., Grasis J. A., Tailor P., Kawakami Y., Kawakami T., Tsoukas C. D. TCR/CD3-Induced activation and binding of Emt/Itk to linker of activated T cell complexes: requirement for the Src homology 2 domain. J Immunol. 2000 Jul 1;165(1):256–262. doi: 10.4049/jimmunol.165.1.256. [DOI] [PubMed] [Google Scholar]
  28. Chow L. M., Fournel M., Davidson D., Veillette A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature. 1993 Sep 9;365(6442):156–160. doi: 10.1038/365156a0. [DOI] [PubMed] [Google Scholar]
  29. Cinek T., Horejsí V. The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol. 1992 Oct 1;149(7):2262–2270. [PubMed] [Google Scholar]
  30. Cloutier J. F., Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 1996 Sep 16;15(18):4909–4918. [PMC free article] [PubMed] [Google Scholar]
  31. Cloutier J. F., Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med. 1999 Jan 4;189(1):111–121. doi: 10.1084/jem.189.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Cohen S., Dadi H., Shaoul E., Sharfe N., Roifman C. M. Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood. 1999 Mar 15;93(6):2013–2024. [PubMed] [Google Scholar]
  33. Couture C., Baier G., Oetken C., Williams S., Telford D., Marie-Cardine A., Baier-Bitterlich G., Fischer S., Burn P., Altman A. Activation of p56lck by p72syk through physical association and N-terminal tyrosine phosphorylation. Mol Cell Biol. 1994 Aug;14(8):5249–5258. doi: 10.1128/mcb.14.8.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Côté J. F., Charest A., Wagner J., Tremblay M. L. Combination of gene targeting and substrate trapping to identify substrates of protein tyrosine phosphatases using PTP-PEST as a model. Biochemistry. 1998 Sep 22;37(38):13128–13137. doi: 10.1021/bi981259l. [DOI] [PubMed] [Google Scholar]
  35. D'Oro U., Ashwell J. D. Cutting edge: the CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J Immunol. 1999 Feb 15;162(4):1879–1883. [PubMed] [Google Scholar]
  36. Davidson D., Cloutier J. F., Gregorieff A., Veillette A. Inhibitory tyrosine protein kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J Biol Chem. 1997 Sep 12;272(37):23455–23462. doi: 10.1074/jbc.272.37.23455. [DOI] [PubMed] [Google Scholar]
  37. Davidson D., Veillette A. PTP-PEST, a scaffold protein tyrosine phosphatase, negatively regulates lymphocyte activation by targeting a unique set of substrates. EMBO J. 2001 Jul 2;20(13):3414–3426. doi: 10.1093/emboj/20.13.3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Dorfman K., Carrasco D., Gruda M., Ryan C., Lira S. A., Bravo R. Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene. 1996 Sep 5;13(5):925–931. [PubMed] [Google Scholar]
  39. Dornan Saffron, Sebestyen Zsolt, Gamble John, Nagy Peter, Bodnar Andrea, Alldridge Lou, Doe Senam, Holmes Nick, Goff Lindsey K., Beverley Peter. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J Biol Chem. 2001 Nov 2;277(3):1912–1918. doi: 10.1074/jbc.M108386200. [DOI] [PubMed] [Google Scholar]
  40. Dráberová L., Dráber P. Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3611–3615. doi: 10.1073/pnas.90.8.3611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Duplay P., Thome M., Hervé F., Acuto O. p56lck interacts via its src homology 2 domain with the ZAP-70 kinase. J Exp Med. 1994 Apr 1;179(4):1163–1172. doi: 10.1084/jem.179.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Edmonds Stuart D., Ostergaard Hanne L. Dynamic association of CD45 with detergent-insoluble microdomains in T lymphocytes. J Immunol. 2002 Nov 1;169(9):5036–5042. doi: 10.4049/jimmunol.169.9.5036. [DOI] [PubMed] [Google Scholar]
  43. Egerton M., Ashe O. R., Chen D., Druker B. J., Burgess W. H., Samelson L. E. VCP, the mammalian homolog of cdc48, is tyrosine phosphorylated in response to T cell antigen receptor activation. EMBO J. 1992 Oct;11(10):3533–3540. doi: 10.1002/j.1460-2075.1992.tb05436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Elder M. E., Lin D., Clever J., Chan A. C., Hope T. J., Weiss A., Parslow T. G. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994 Jun 10;264(5165):1596–1599. doi: 10.1126/science.8202712. [DOI] [PubMed] [Google Scholar]
  45. Emmrich F. Cross-linking of CD4 and CD8 with the T-cell receptor complex: quaternary complex formation and T-cell repertoire selection. Immunol Today. 1988 Oct;9(10):296–300. doi: 10.1016/0167-5699(88)91320-5. [DOI] [PubMed] [Google Scholar]
  46. Exley M., Varticovski L., Peter M., Sancho J., Terhorst C. Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor zeta chain is dependent on T cell activation. J Biol Chem. 1994 May 27;269(21):15140–15146. [PubMed] [Google Scholar]
  47. Feng G. S. Shp-2 tyrosine phosphatase: signaling one cell or many. Exp Cell Res. 1999 Nov 25;253(1):47–54. doi: 10.1006/excr.1999.4668. [DOI] [PubMed] [Google Scholar]
  48. Frearson J. A., Alexander D. R. The phosphotyrosine phosphatase SHP-2 participates in a multimeric signaling complex and regulates T cell receptor (TCR) coupling to the Ras/mitogen-activated protein kinase (MAPK) pathway in Jurkat T cells. J Exp Med. 1998 May 4;187(9):1417–1426. doi: 10.1084/jem.187.9.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Freiberg Benjamin A., Kupfer Hannah, Maslanik William, Delli Joe, Kappler John, Zaller Dennis M., Kupfer Abraham. Staging and resetting T cell activation in SMACs. Nat Immunol. 2002 Sep 3;3(10):911–917. doi: 10.1038/ni836. [DOI] [PubMed] [Google Scholar]
  50. Furukawa T., Itoh M., Krueger N. X., Streuli M., Saito H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10928–10932. doi: 10.1073/pnas.91.23.10928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Garcia-Morales P., Minami Y., Luong E., Klausner R. D., Samelson L. E. Tyrosine phosphorylation in T cells is regulated by phosphatase activity: studies with phenylarsine oxide. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9255–9259. doi: 10.1073/pnas.87.23.9255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Garnett D., Barclay A. N., Carmo A. M., Beyers A. D. The association of the protein tyrosine kinases p56lck and p60fyn with the glycosyl phosphatidylinositol-anchored proteins Thy-1 and CD48 in rat thymocytes is dependent on the state of cellular activation. Eur J Immunol. 1993 Oct;23(10):2540–2544. doi: 10.1002/eji.1830231024. [DOI] [PubMed] [Google Scholar]
  53. Garton A. J., Flint A. J., Tonks N. K. Identification of p130(cas) as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST. Mol Cell Biol. 1996 Nov;16(11):6408–6418. doi: 10.1128/mcb.16.11.6408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Gibson S., August A., Branch D., Dupont B., Mills G. M. Functional LCK Is required for optimal CD28-mediated activation of the TEC family tyrosine kinase EMT/ITK. J Biol Chem. 1996 Mar 22;271(12):7079–7083. doi: 10.1074/jbc.271.12.7079. [DOI] [PubMed] [Google Scholar]
  55. Gjörloff-Wingren A., Saxena M., Williams S., Hammi D., Mustelin T. Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol. 1999 Dec;29(12):3845–3854. doi: 10.1002/(SICI)1521-4141(199912)29:12<3845::AID-IMMU3845>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  56. Gronda M., Arab S., Iafrate B., Suzuki H., Zanke B. W. Hematopoietic protein tyrosine phosphatase suppresses extracellular stimulus-regulated kinase activation. Mol Cell Biol. 2001 Oct;21(20):6851–6858. doi: 10.1128/MCB.21.20.6851-6858.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Gu H., Pratt J. C., Burakoff S. J., Neel B. G. Cloning of p97/Gab2, the major SHP2-binding protein in hematopoietic cells, reveals a novel pathway for cytokine-induced gene activation. Mol Cell. 1998 Dec;2(6):729–740. doi: 10.1016/s1097-2765(00)80288-9. [DOI] [PubMed] [Google Scholar]
  58. Gupta S., Weiss A., Kumar G., Wang S., Nel A. The T-cell antigen receptor utilizes Lck, Raf-1, and MEK-1 for activating mitogen-activated protein kinase. Evidence for the existence of a second protein kinase C-dependent pathway in an Lck-negative Jurkat cell mutant. J Biol Chem. 1994 Jun 24;269(25):17349–17357. [PubMed] [Google Scholar]
  59. Han S., Williams S., Mustelin T. Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol. 2000 May;30(5):1318–1325. doi: 10.1002/(SICI)1521-4141(200005)30:5<1318::AID-IMMU1318>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  60. Hardwick J. S., Sefton B. M. Activation of the Lck tyrosine protein kinase by hydrogen peroxide requires the phosphorylation of Tyr-394. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4527–4531. doi: 10.1073/pnas.92.10.4527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Haughn L., Gratton S., Caron L., Sékaly R. P., Veillette A., Julius M. Association of tyrosine kinase p56lck with CD4 inhibits the induction of growth through the alpha beta T-cell receptor. Nature. 1992 Jul 23;358(6384):328–331. doi: 10.1038/358328a0. [DOI] [PubMed] [Google Scholar]
  62. He Xiao, Woodford-Thomas Terry A., Johnson Kenneth G., Shah Dulari D., Thomas Matthew L. Targeting of CD45 protein tyrosine phosphatase activity to lipid microdomains on the T cell surface inhibits TCR signaling. Eur J Immunol. 2002 Sep;32(9):2578–2587. doi: 10.1002/1521-4141(200209)32:9<2578::AID-IMMU2578>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  63. Heyeck S. D., Wilcox H. M., Bunnell S. C., Berg L. J. Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J Biol Chem. 1997 Oct 3;272(40):25401–25408. doi: 10.1074/jbc.272.40.25401. [DOI] [PubMed] [Google Scholar]
  64. Howell B. W., Cooper J. A. Csk suppression of Src involves movement of Csk to sites of Src activity. Mol Cell Biol. 1994 Aug;14(8):5402–5411. doi: 10.1128/mcb.14.8.5402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Huang C., Hepler J. R., Chen L. T., Gilman A. G., Anderson R. G., Mumby S. M. Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell. 1997 Dec;8(12):2365–2378. doi: 10.1091/mbc.8.12.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hurley T. R., Hyman R., Sefton B. M. Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phosphorylation of the lck, fyn, and c-src tyrosine protein kinases. Mol Cell Biol. 1993 Mar;13(3):1651–1656. doi: 10.1128/mcb.13.3.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hurley T. R., Sefton B. M. Analysis of the activity and phosphorylation of the lck protein in lymphoid cells. Oncogene. 1989 Mar;4(3):265–272. [PubMed] [Google Scholar]
  68. Iivanainen A. V., Lindqvist C., Mustelin T., Andersson L. C. Phosphotyrosine phosphatases are involved in reversion of T lymphoblastic proliferation. Eur J Immunol. 1990 Nov;20(11):2509–2512. doi: 10.1002/eji.1830201123. [DOI] [PubMed] [Google Scholar]
  69. Imamoto A., Soriano P. Disruption of the csk gene, encoding a negative regulator of Src family tyrosine kinases, leads to neural tube defects and embryonic lethality in mice. Cell. 1993 Jun 18;73(6):1117–1124. doi: 10.1016/0092-8674(93)90641-3. [DOI] [PubMed] [Google Scholar]
  70. Irie-Sasaki J., Sasaki T., Matsumoto W., Opavsky A., Cheng M., Welstead G., Griffiths E., Krawczyk C., Richardson C. D., Aitken K. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature. 2001 Jan 18;409(6818):349–354. doi: 10.1038/35053086. [DOI] [PubMed] [Google Scholar]
  71. Irving B. A., Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991 Mar 8;64(5):891–901. doi: 10.1016/0092-8674(91)90314-o. [DOI] [PubMed] [Google Scholar]
  72. Isakov N., Wange R. L., Burgess W. H., Watts J. D., Aebersold R., Samelson L. E. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J Exp Med. 1995 Jan 1;181(1):375–380. doi: 10.1084/jem.181.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Ishiai M., Kurosaki M., Inabe K., Chan A. C., Sugamura K., Kurosaki T. Involvement of LAT, Gads, and Grb2 in compartmentation of SLP-76 to the plasma membrane. J Exp Med. 2000 Sep 18;192(6):847–856. doi: 10.1084/jem.192.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Itoh Katsuhiko, Sakakibara Masahiro, Yamasaki Sho, Takeuchi Arata, Arase Hisashi, Miyazaki Masaru, Nakajima Nobuyuki, Okada Masato, Saito Takashi. Cutting edge: negative regulation of immune synapse formation by anchoring lipid raft to cytoskeleton through Cbp-EBP50-ERM assembly. J Immunol. 2002 Jan 15;168(2):541–544. doi: 10.4049/jimmunol.168.2.541. [DOI] [PubMed] [Google Scholar]
  75. Jackman J. K., Motto D. G., Sun Q., Tanemoto M., Turck C. W., Peltz G. A., Koretzky G. A., Findell P. R. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J Biol Chem. 1995 Mar 31;270(13):7029–7032. doi: 10.1074/jbc.270.13.7029. [DOI] [PubMed] [Google Scholar]
  76. Janes P. W., Ley S. C., Magee A. I., Kabouridis P. S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000 Feb;12(1):23–34. doi: 10.1006/smim.2000.0204. [DOI] [PubMed] [Google Scholar]
  77. Johnson S. A., Pleiman C. M., Pao L., Schneringer J., Hippen K., Cambier J. C. Phosphorylated immunoreceptor signaling motifs (ITAMs) exhibit unique abilities to bind and activate Lyn and Syk tyrosine kinases. J Immunol. 1995 Nov 15;155(10):4596–4603. [PubMed] [Google Scholar]
  78. June C. H., Fletcher M. C., Ledbetter J. A., Schieven G. L., Siegel J. N., Phillips A. F., Samelson L. E. Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7722–7726. doi: 10.1073/pnas.87.19.7722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Kabouridis P. S., Janzen J., Magee A. L., Ley S. C. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol. 2000 Mar;30(3):954–963. doi: 10.1002/1521-4141(200003)30:3<954::AID-IMMU954>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  80. Kammer G. M. The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol Today. 1988 Jul-Aug;9(7-8):222–229. doi: 10.1016/0167-5699(88)91220-0. [DOI] [PubMed] [Google Scholar]
  81. Katzav S., Sutherland M., Packham G., Yi T., Weiss A. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-Vav. J Biol Chem. 1994 Dec 23;269(51):32579–32585. [PubMed] [Google Scholar]
  82. Kawabuchi M., Satomi Y., Takao T., Shimonishi Y., Nada S., Nagai K., Tarakhovsky A., Okada M. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 2000 Apr 27;404(6781):999–1003. doi: 10.1038/35010121. [DOI] [PubMed] [Google Scholar]
  83. Kawakami T., Kawakami Y., Aaronson S. A., Robbins K. C. Acquisition of transforming properties by FYN, a normal SRC-related human gene. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3870–3874. doi: 10.1073/pnas.85.11.3870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Klausner R. D., Samelson L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991 Mar 8;64(5):875–878. doi: 10.1016/0092-8674(91)90310-u. [DOI] [PubMed] [Google Scholar]
  85. Kolanus W., Romeo C., Seed B. T cell activation by clustered tyrosine kinases. Cell. 1993 Jul 16;74(1):171–183. doi: 10.1016/0092-8674(93)90304-9. [DOI] [PubMed] [Google Scholar]
  86. Koretzky G. A., Picus J., Thomas M. L., Weiss A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature. 1990 Jul 5;346(6279):66–68. doi: 10.1038/346066a0. [DOI] [PubMed] [Google Scholar]
  87. La Face D. M., Couture C., Anderson K., Shih G., Alexander J., Sette A., Mustelin T., Altman A., Grey H. M. Differential T cell signaling induced by antagonist peptide-MHC complexes and the associated phenotypic responses. J Immunol. 1997 Mar 1;158(5):2057–2064. [PubMed] [Google Scholar]
  88. Latour S., Chow L. M., Veillette A. Differential intrinsic enzymatic activity of Syk and Zap-70 protein-tyrosine kinases. J Biol Chem. 1996 Sep 13;271(37):22782–22790. doi: 10.1074/jbc.271.37.22782. [DOI] [PubMed] [Google Scholar]
  89. Latour S., Chow L. M., Veillette A. Differential intrinsic enzymatic activity of Syk and Zap-70 protein-tyrosine kinases. J Biol Chem. 1996 Sep 13;271(37):22782–22790. doi: 10.1074/jbc.271.37.22782. [DOI] [PubMed] [Google Scholar]
  90. Liu K. Q., Bunnell S. C., Gurniak C. B., Berg L. J. T cell receptor-initiated calcium release is uncoupled from capacitative calcium entry in Itk-deficient T cells. J Exp Med. 1998 May 18;187(10):1721–1727. doi: 10.1084/jem.187.10.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Madrenas J., Wange R. L., Wang J. L., Isakov N., Samelson L. E., Germain R. N. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science. 1995 Jan 27;267(5197):515–518. doi: 10.1126/science.7824949. [DOI] [PubMed] [Google Scholar]
  92. Majeti R., Bilwes A. M., Noel J. P., Hunter T., Weiss A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science. 1998 Jan 2;279(5347):88–91. doi: 10.1126/science.279.5347.88. [DOI] [PubMed] [Google Scholar]
  93. Majeti R., Xu Z., Parslow T. G., Olson J. L., Daikh D. I., Killeen N., Weiss A. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell. 2000 Dec 22;103(7):1059–1070. doi: 10.1016/s0092-8674(00)00209-9. [DOI] [PubMed] [Google Scholar]
  94. Mallick-Wood C. A., Pao W., Cheng A. M., Lewis J. M., Kulkarni S., Bolen J. B., Rowley B., Tigelaar R. E., Pawson T., Hayday A. C. Disruption of epithelial gamma delta T cell repertoires by mutation of the Syk tyrosine kinase. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9704–9709. doi: 10.1073/pnas.93.18.9704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Marth J. D., Cooper J. A., King C. S., Ziegler S. F., Tinker D. A., Overell R. W., Krebs E. G., Perlmutter R. M. Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol Cell Biol. 1988 Feb;8(2):540–550. doi: 10.1128/mcb.8.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Marth J. D., Lewis D. B., Wilson C. B., Gearn M. E., Krebs E. G., Perlmutter R. M. Regulation of pp56lck during T-cell activation: functional implications for the src-like protein tyrosine kinases. EMBO J. 1987 Sep;6(9):2727–2734. doi: 10.1002/j.1460-2075.1987.tb02566.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Matthews R. J., Bowne D. B., Flores E., Thomas M. L. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol Cell Biol. 1992 May;12(5):2396–2405. doi: 10.1128/mcb.12.5.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Mustelin T., Altman A. Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene. 1990 Jun;5(6):809–813. [PubMed] [Google Scholar]
  99. Mustelin T., Altman A. Do CD4 and CD8 control T-cell activation via a specific tyrosine protein kinase? Immunol Today. 1989 Jun;10(6):189–192. doi: 10.1016/0167-5699(89)90322-8. [DOI] [PubMed] [Google Scholar]
  100. Mustelin T., Brockdorff J., Gjörloff-Wingren A., Tailor P., Han S., Wang X., Saxena M. Lymphocyte activation: the coming of the protein tyrosine phosphatases. Front Biosci. 1998 Nov 1;3:D1060–D1096. doi: 10.2741/a346. [DOI] [PubMed] [Google Scholar]
  101. Mustelin T., Brockdorff J., Rudbeck L., Gjörloff-Wingren A., Han S., Wang X., Tailor P., Saxena M. The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Cell Signal. 1999 Sep;11(9):637–650. doi: 10.1016/s0898-6568(99)00016-9. [DOI] [PubMed] [Google Scholar]
  102. Mustelin T., Burn P. Regulation of src family tyrosine kinases in lymphocytes. Trends Biochem Sci. 1993 Jun;18(6):215–220. doi: 10.1016/0968-0004(93)90192-p. [DOI] [PubMed] [Google Scholar]
  103. Mustelin T., Coggeshall K. M., Altman A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6302–6306. doi: 10.1073/pnas.86.16.6302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Mustelin T., Coggeshall K. M., Isakov N., Altman A. T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation. Science. 1990 Mar 30;247(4950):1584–1587. doi: 10.1126/science.2138816. [DOI] [PubMed] [Google Scholar]
  105. Mustelin T., Feng G. S., Bottini N., Alonso A., Kholod N., Birle D., Merlo J., Huynh H. Protein tyrosine phosphatases. Front Biosci. 2002 Jan 1;7:d85–142. doi: 10.2741/A770. [DOI] [PubMed] [Google Scholar]
  106. Mustelin T., Pessa-Morikawa T., Autero M., Gassmann M., Andersson L. C., Gahmberg C. G., Burn P. Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. Eur J Immunol. 1992 May;22(5):1173–1178. doi: 10.1002/eji.1830220510. [DOI] [PubMed] [Google Scholar]
  107. Mustelin T. T cell antigen receptor signaling: three families of tyrosine kinases and a phosphatase. Immunity. 1994 Aug;1(5):351–356. doi: 10.1016/1074-7613(94)90065-5. [DOI] [PubMed] [Google Scholar]
  108. Mustelin Tomas. Keeping the T-cell immune response in balance: role of protein tyrosine phosphatases in autoimmunity. Curr Dir Autoimmun. 2002;5:176–190. doi: 10.1159/000060553. [DOI] [PubMed] [Google Scholar]
  109. Nada S., Okada M., MacAuley A., Cooper J. A., Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature. 1991 May 2;351(6321):69–72. doi: 10.1038/351069a0. [DOI] [PubMed] [Google Scholar]
  110. Nada S., Yagi T., Takeda H., Tokunaga T., Nakagawa H., Ikawa Y., Okada M., Aizawa S. Constitutive activation of Src family kinases in mouse embryos that lack Csk. Cell. 1993 Jun 18;73(6):1125–1135. doi: 10.1016/0092-8674(93)90642-4. [DOI] [PubMed] [Google Scholar]
  111. Negishi I., Motoyama N., Nakayama K., Nakayama K., Senju S., Hatakeyama S., Zhang Q., Chan A. C., Loh D. Y. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature. 1995 Aug 3;376(6539):435–438. doi: 10.1038/376435a0. [DOI] [PubMed] [Google Scholar]
  112. Neumeister E. N., Zhu Y., Richard S., Terhorst C., Chan A. C., Shaw A. S. Binding of ZAP-70 to phosphorylated T-cell receptor zeta and eta enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins. Mol Cell Biol. 1995 Jun;15(6):3171–3178. doi: 10.1128/mcb.15.6.3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Nishida K., Yoshida Y., Itoh M., Fukada T., Ohtani T., Shirogane T., Atsumi T., Takahashi-Tezuka M., Ishihara K., Hibi M. Gab-family adapter proteins act downstream of cytokine and growth factor receptors and T- and B-cell antigen receptors. Blood. 1999 Mar 15;93(6):1809–1816. [PubMed] [Google Scholar]
  114. O'Shea J. J., McVicar D. W., Bailey T. L., Burns C., Smyth M. J. Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10306–10310. doi: 10.1073/pnas.89.21.10306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Oetken C., Couture C., Bergman M., Bonnefoy-Bérard N., Williams S., Alitalo K., Burn P., Mustelin T. TCR/CD3-triggering causes increased activity of the p50csk tyrosine kinase and engagement of its SH2 domain. Oncogene. 1994 Jun;9(6):1625–1631. [PubMed] [Google Scholar]
  116. Oetken C., von Willebrand M., Marie-Cardine A., Pessa-Morikawa T., Ståhls A., Fisher S., Mustelin T. Induction of hyperphosphorylation and activation of the p56lck protein tyrosine kinase by phenylarsine oxide, a phosphotyrosine phosphatase inhibitor. Mol Immunol. 1994 Dec;31(17):1295–1302. doi: 10.1016/0161-5890(94)90047-7. [DOI] [PubMed] [Google Scholar]
  117. Okada M., Nada S., Yamanashi Y., Yamamoto T., Nakagawa H. CSK: a protein-tyrosine kinase involved in regulation of src family kinases. J Biol Chem. 1991 Dec 25;266(36):24249–24252. [PubMed] [Google Scholar]
  118. Osman N., Lucas S. C., Turner H., Cantrell D. A comparison of the interaction of Shc and the tyrosine kinase ZAP-70 with the T cell antigen receptor zeta chain tyrosine-based activation motif. J Biol Chem. 1995 Jun 9;270(23):13981–13986. doi: 10.1074/jbc.270.23.13981. [DOI] [PubMed] [Google Scholar]
  119. Ostergaard H. L., Shackelford D. A., Hurley T. R., Johnson P., Hyman R., Sefton B. M., Trowbridge I. S. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8959–8963. doi: 10.1073/pnas.86.22.8959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Pani G., Fischer K. D., Mlinaric-Rascan I., Siminovitch K. A. Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J Exp Med. 1996 Sep 1;184(3):839–852. doi: 10.1084/jem.184.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Pani G., Fischer K. D., Mlinaric-Rascan I., Siminovitch K. A. Signaling capacity of the T cell antigen receptor is negatively regulated by the PTP1C tyrosine phosphatase. J Exp Med. 1996 Sep 1;184(3):839–852. doi: 10.1084/jem.184.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Partanen J., Armstrong E., Bergman M., Mäkelä T. P., Hirvonen H., Huebner K., Alitalo K. cyl encodes a putative cytoplasmic tyrosine kinase lacking the conserved tyrosine autophosphorylation site (Y416src). Oncogene. 1991 Nov;6(11):2013–2018. [PubMed] [Google Scholar]
  123. Perez-Villar J. J., Kanner S. B. Regulated association between the tyrosine kinase Emt/Itk/Tsk and phospholipase-C gamma 1 in human T lymphocytes. J Immunol. 1999 Dec 15;163(12):6435–6441. [PubMed] [Google Scholar]
  124. Pingel J. T., Thomas M. L. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell. 1989 Sep 22;58(6):1055–1065. doi: 10.1016/0092-8674(89)90504-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Qu C. K., Nguyen S., Chen J., Feng G. S. Requirement of Shp-2 tyrosine phosphatase in lymphoid and hematopoietic cell development. Blood. 2001 Feb 15;97(4):911–914. doi: 10.1182/blood.v97.4.911. [DOI] [PubMed] [Google Scholar]
  126. Raab M., Rudd C. E. Hematopoietic cell phosphatase (HCP) regulates p56LCK phosphorylation and ZAP-70 binding to T cell receptor zeta chain. Biochem Biophys Res Commun. 1996 May 6;222(1):50–57. doi: 10.1006/bbrc.1996.0696. [DOI] [PubMed] [Google Scholar]
  127. Razani B., Rubin C. S., Lisanti M. P. Regulation of cAMP-mediated signal transduction via interaction of caveolins with the catalytic subunit of protein kinase A. J Biol Chem. 1999 Sep 10;274(37):26353–26360. doi: 10.1074/jbc.274.37.26353. [DOI] [PubMed] [Google Scholar]
  128. Rodgers W., Crise B., Rose J. K. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol. 1994 Aug;14(8):5384–5391. doi: 10.1128/mcb.14.8.5384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Romeo C., Amiot M., Seed B. Sequence requirements for induction of cytolysis by the T cell antigen/Fc receptor zeta chain. Cell. 1992 Mar 6;68(5):889–897. doi: 10.1016/0092-8674(92)90032-8. [DOI] [PubMed] [Google Scholar]
  130. Rudd C. E., Trevillyan J. M., Dasgupta J. D., Wong L. L., Schlossman S. F. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5190–5194. doi: 10.1073/pnas.85.14.5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Saxena M., Mustelin T. Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol. 2000 Aug;12(4):387–396. doi: 10.1006/smim.2000.0219. [DOI] [PubMed] [Google Scholar]
  132. Saxena M., Williams S., Brockdorff J., Gilman J., Mustelin T. Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP). J Biol Chem. 1999 Apr 23;274(17):11693–11700. doi: 10.1074/jbc.274.17.11693. [DOI] [PubMed] [Google Scholar]
  133. Saxena M., Williams S., Gilman J., Mustelin T. Negative regulation of T cell antigen receptor signal transduction by hematopoietic tyrosine phosphatase (HePTP). J Biol Chem. 1998 Jun 19;273(25):15340–15344. doi: 10.1074/jbc.273.25.15340. [DOI] [PubMed] [Google Scholar]
  134. Saxena M., Williams S., Taskén K., Mustelin T. Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase. Nat Cell Biol. 1999 Sep;1(5):305–311. doi: 10.1038/13024. [DOI] [PubMed] [Google Scholar]
  135. Schade Andrew E., Levine Alan D. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J Immunol. 2002 Mar 1;168(5):2233–2239. doi: 10.4049/jimmunol.168.5.2233. [DOI] [PubMed] [Google Scholar]
  136. Schneider H., Guerette B., Guntermann C., Rudd C. E. Resting lymphocyte kinase (Rlk/Txk) targets lymphoid adaptor SLP-76 in the cooperative activation of interleukin-2 transcription in T-cells. J Biol Chem. 2000 Feb 11;275(6):3835–3840. doi: 10.1074/jbc.275.6.3835. [DOI] [PubMed] [Google Scholar]
  137. Secrist J. P., Burns L. A., Karnitz L., Koretzky G. A., Abraham R. T. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem. 1993 Mar 15;268(8):5886–5893. [PubMed] [Google Scholar]
  138. Sefton B. M. The lck tyrosine protein kinase. Oncogene. 1991 May;6(5):683–686. [PubMed] [Google Scholar]
  139. Shiroo M., Goff L., Biffen M., Shivnan E., Alexander D. CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. EMBO J. 1992 Dec;11(13):4887–4897. doi: 10.1002/j.1460-2075.1992.tb05595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Sicheri F., Moarefi I., Kuriyan J. Crystal structure of the Src family tyrosine kinase Hck. Nature. 1997 Feb 13;385(6617):602–609. doi: 10.1038/385602a0. [DOI] [PubMed] [Google Scholar]
  141. Sieh M., Bolen J. B., Weiss A. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 1993 Jan;12(1):315–321. doi: 10.1002/j.1460-2075.1993.tb05659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Skålhegg B. S., Landmark B. F., Døskeland S. O., Hansson V., Lea T., Jahnsen T. Cyclic AMP-dependent protein kinase type I mediates the inhibitory effects of 3',5'-cyclic adenosine monophosphate on cell replication in human T lymphocytes. J Biol Chem. 1992 Aug 5;267(22):15707–15714. [PubMed] [Google Scholar]
  143. Skålhegg B. S., Taskén K., Hansson V., Huitfeldt H. S., Jahnsen T., Lea T. Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex. Science. 1994 Jan 7;263(5143):84–87. doi: 10.1126/science.8272870. [DOI] [PubMed] [Google Scholar]
  144. Sloan-Lancaster J., Shaw A. S., Rothbard J. B., Allen P. M. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell. 1994 Dec 2;79(5):913–922. doi: 10.1016/0092-8674(94)90080-9. [DOI] [PubMed] [Google Scholar]
  145. Straus D. B., Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell. 1992 Aug 21;70(4):585–593. doi: 10.1016/0092-8674(92)90428-f. [DOI] [PubMed] [Google Scholar]
  146. Su Y. W., Zhang Y., Schweikert J., Koretzky G. A., Reth M., Wienands J. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur J Immunol. 1999 Nov;29(11):3702–3711. doi: 10.1002/(SICI)1521-4141(199911)29:11<3702::AID-IMMU3702>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  147. Tailor P., Gilman J., Williams S., Couture C., Mustelin T. Regulation of the low molecular weight phosphotyrosine phosphatase by phosphorylation at tyrosines 131 and 132. J Biol Chem. 1997 Feb 28;272(9):5371–5374. doi: 10.1074/jbc.272.9.5371. [DOI] [PubMed] [Google Scholar]
  148. Takeuchi S., Takayama Y., Ogawa A., Tamura K., Okada M. Transmembrane phosphoprotein Cbp positively regulates the activity of the carboxyl-terminal Src kinase, Csk. J Biol Chem. 2000 Sep 22;275(38):29183–29186. doi: 10.1074/jbc.C000326200. [DOI] [PubMed] [Google Scholar]
  149. Thomas M. L. The leukocyte common antigen family. Annu Rev Immunol. 1989;7:339–369. doi: 10.1146/annurev.iy.07.040189.002011. [DOI] [PubMed] [Google Scholar]
  150. Torgersen K. M., Vang T., Abrahamsen H., Yaqub S., Horejsí V., Schraven B., Rolstad B., Mustelin T., Taskén K. Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J Biol Chem. 2001 Jun 4;276(31):29313–29318. doi: 10.1074/jbc.C100014200. [DOI] [PubMed] [Google Scholar]
  151. Torgersen Knut Martin, Vang Torkel, Abrahamsen Hilde, Yaqub Sheraz, Taskén Kjetil. Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal. 2002 Jan;14(1):1–9. doi: 10.1016/s0898-6568(01)00214-5. [DOI] [PubMed] [Google Scholar]
  152. Turka L. A., Kanner S. B., Schieven G. L., Thompson C. B., Ledbetter J. A. CD45 modulates T cell receptor/CD3-induced activation of human thymocytes via regulation of tyrosine phosphorylation. Eur J Immunol. 1992 Feb;22(2):551–557. doi: 10.1002/eji.1830220238. [DOI] [PubMed] [Google Scholar]
  153. Turner M., Mee P. J., Costello P. S., Williams O., Price A. A., Duddy L. P., Furlong M. T., Geahlen R. L., Tybulewicz V. L. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature. 1995 Nov 16;378(6554):298–302. doi: 10.1038/378298a0. [DOI] [PubMed] [Google Scholar]
  154. Vang T., Torgersen K. M., Sundvold V., Saxena M., Levy F. O., Skålhegg B. S., Hansson V., Mustelin T., Taskén K. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med. 2001 Feb 19;193(4):497–507. doi: 10.1084/jem.193.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Veillette A., Bookman M. A., Horak E. M., Bolen J. B. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell. 1988 Oct 21;55(2):301–308. doi: 10.1016/0092-8674(88)90053-0. [DOI] [PubMed] [Google Scholar]
  156. Veillette A., Fournel M. The CD4 associated tyrosine protein kinase p56lck is positively regulated through its site of autophosphorylation. Oncogene. 1990 Oct;5(10):1455–1462. [PubMed] [Google Scholar]
  157. Viola A. The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol. 2001 Jun;22(6):322–327. doi: 10.1016/s1471-4906(01)01938-x. [DOI] [PubMed] [Google Scholar]
  158. Vivier E., Daëron M. Immunoreceptor tyrosine-based inhibition motifs. Immunol Today. 1997 Jun;18(6):286–291. doi: 10.1016/s0167-5699(97)80025-4. [DOI] [PubMed] [Google Scholar]
  159. Volarević S., Niklinska B. B., Burns C. M., Yamada H., June C. H., Dumont F. J., Ashwell J. D. The CD45 tyrosine phosphatase regulates phosphotyrosine homeostasis and its loss reveals a novel pattern of late T cell receptor-induced Ca2+ oscillations. J Exp Med. 1992 Sep 1;176(3):835–844. doi: 10.1084/jem.176.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Wang Xiaodong, Huynh Huong, Gjörloff-Wingren Anette, Monosov Edvard, Stridsberg Mats, Fukuda Minoru, Mustelin Tomas. Enlargement of secretory vesicles by protein tyrosine phosphatase PTP-MEG2 in rat basophilic leukemia mast cells and Jurkat T cells. J Immunol. 2002 May 1;168(9):4612–4619. doi: 10.4049/jimmunol.168.9.4612. [DOI] [PubMed] [Google Scholar]
  161. Wange R. L., Guitián R., Isakov N., Watts J. D., Aebersold R., Samelson L. E. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70. J Biol Chem. 1995 Aug 11;270(32):18730–18733. doi: 10.1074/jbc.270.32.18730. [DOI] [PubMed] [Google Scholar]
  162. Weber J. R., Bell G. M., Han M. Y., Pawson T., Imboden J. B. Association of the tyrosine kinase LCK with phospholipase C-gamma 1 after stimulation of the T cell antigen receptor. J Exp Med. 1992 Aug 1;176(2):373–379. doi: 10.1084/jem.176.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Weber J. R., Orstavik S., Torgersen K. M., Danbolt N. C., Berg S. F., Ryan J. C., Taskén K., Imboden J. B., Vaage J. T. Molecular cloning of the cDNA encoding pp36, a tyrosine-phosphorylated adaptor protein selectively expressed by T cells and natural killer cells. J Exp Med. 1998 Apr 6;187(7):1157–1161. doi: 10.1084/jem.187.7.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  165. Williams B. L., Schreiber K. L., Zhang W., Wange R. L., Samelson L. E., Leibson P. J., Abraham R. T. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol Cell Biol. 1998 Mar;18(3):1388–1399. doi: 10.1128/mcb.18.3.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Williams S., Couture C., Gilman J., Jascur T., Deckert M., Altman A., Mustelin T. Reconstitution of T cell antigen receptor-induced Erk2 kinase activation in Lck-negative JCaM1 cells by Syk. Eur J Biochem. 1997 Apr 1;245(1):84–90. doi: 10.1111/j.1432-1033.1997.00084.x. [DOI] [PubMed] [Google Scholar]
  167. Williams S., Couture C., Gilman J., Jascur T., Deckert M., Altman A., Mustelin T. Reconstitution of T cell antigen receptor-induced Erk2 kinase activation in Lck-negative JCaM1 cells by Syk. Eur J Biochem. 1997 Apr 1;245(1):84–90. doi: 10.1111/j.1432-1033.1997.00084.x. [DOI] [PubMed] [Google Scholar]
  168. Xu W., Harrison S. C., Eck M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 1997 Feb 13;385(6617):595–602. doi: 10.1038/385595a0. [DOI] [PubMed] [Google Scholar]
  169. Xu Zheng, Weiss Arthur. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol. 2002 Jul 22;3(8):764–771. doi: 10.1038/ni822. [DOI] [PubMed] [Google Scholar]
  170. Yamaguchi H., Hendrickson W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature. 1996 Dec 5;384(6608):484–489. doi: 10.1038/384484a0. [DOI] [PubMed] [Google Scholar]
  171. Zenner G., Dirk zur Hausen J., Burn P., Mustelin T. Towards unraveling the complexity of T cell signal transduction. Bioessays. 1995 Nov;17(11):967–975. doi: 10.1002/bies.950171110. [DOI] [PubMed] [Google Scholar]
  172. Zenner G., Vorherr T., Mustelin T., Burn P. Differential and multiple binding of signal transducing molecules to the ITAMs of the TCR-zeta chain. J Cell Biochem. 1996 Oct;63(1):94–103. doi: 10.1002/(sici)1097-4644(199610)63:1<94::aid-jcb8>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  173. Zhang S. H., Liu J., Kobayashi R., Tonks N. K. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem. 1999 Jun 18;274(25):17806–17812. doi: 10.1074/jbc.274.25.17806. [DOI] [PubMed] [Google Scholar]
  174. Zhang W., Irvin B. J., Trible R. P., Abraham R. T., Samelson L. E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int Immunol. 1999 Jun;11(6):943–950. doi: 10.1093/intimm/11.6.943. [DOI] [PubMed] [Google Scholar]
  175. Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 1998 Jan 9;92(1):83–92. doi: 10.1016/s0092-8674(00)80901-0. [DOI] [PubMed] [Google Scholar]
  176. Zhu Wei, Mustelin Tomas, David Michael. Arginine methylation of STAT1 regulates its dephosphorylation by T cell protein tyrosine phosphatase. J Biol Chem. 2002 Aug 8;277(39):35787–35790. doi: 10.1074/jbc.C200346200. [DOI] [PubMed] [Google Scholar]
  177. al-Ramadi B. K., Nakamura T., Leitenberg D., Bothwell A. L. Deficient expression of p56(lck) in Th2 cells leads to partial TCR signaling and a dysregulation in lymphokine mRNA levels. J Immunol. 1996 Dec 1;157(11):4751–4761. [PubMed] [Google Scholar]
  178. van Leeuwen J. E., Samelson L. E. T cell antigen-receptor signal transduction. Curr Opin Immunol. 1999 Jun;11(3):242–248. doi: 10.1016/s0952-7915(99)80040-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES