Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):131–142. doi: 10.1042/BJ20021259

Biosynthesis of heparan sulphate with diverse structures and functions: two alternatively spliced forms of human heparan sulphate 6-O-sulphotransferase-2 having different expression patterns and properties.

Hiroko Habuchi 1, Goichiro Miyake 1, Ken Nogami 1, Asato Kuroiwa 1, Yoichi Matsuda 1, Marion Kusche-Gullberg 1, Osami Habuchi 1, Masayuki Tanaka 1, Koji Kimata 1
PMCID: PMC1223259  PMID: 12492399

Abstract

Heparan sulphate 6- O -sulphotransferase (HS6ST) catalyses the transfer of sulphate from adenosine 3'-phosphate, 5'-phosphosulphate to the 6th position of the N -sulphoglucosamine residue in HS. We previously described the occurrence of three isoforms of mouse HS6ST, mHS6ST-1, -2, and -3 [Habuchi, Tanaka, Habuchi, Yoshida, Suzuki, Ban and Kimata (2000) J. Biol. Chem. 275, 2859-2868]. In the present study, we have characterized HS6ST-2 and HS6ST-1 human isologues, including their chromosomal localizations. In the process of their cDNA cloning, we found two forms of HS6ST-2: the original (hHS6ST-2) and a short form (hHS6ST-2S) with 40 amino acids deleted. Both hHS6ST-2 and hHS6ST-2S catalysed the same sulphation reaction, but their preferences for sulphation sites in HS substrates were different. Dot-blot analysis of the two forms showed that the original form was exclusively expressed in adult and foetal brain tissues, whereas the short form was expressed preferentially in ovary, placenta and foetal kidney, suggesting that the expression of two forms of hHS6ST-2 is strictly regulated to yield tissue-dependent differences in the fine structure of HS. A refined analysis of their reaction products has led us to another finding, that HS6STs could also transfer sulphate to N -sulphoglucosamine residues located at the non-reducing terminal of HS with high affinity.

Full Text

The Full Text of this article is available as a PDF (349.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa J., Grobe K., Tsujimoto M., Esko J. D. Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J Biol Chem. 2000 Nov 21;276(8):5876–5882. doi: 10.1074/jbc.M009606200. [DOI] [PubMed] [Google Scholar]
  2. Aikawa J., Esko J. D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. J Biol Chem. 1999 Jan 29;274(5):2690–2695. doi: 10.1074/jbc.274.5.2690. [DOI] [PubMed] [Google Scholar]
  3. Baeg G. H., Perrimon N. Functional binding of secreted molecules to heparan sulfate proteoglycans in Drosophila. Curr Opin Cell Biol. 2000 Oct;12(5):575–580. doi: 10.1016/s0955-0674(00)00134-4. [DOI] [PubMed] [Google Scholar]
  4. Bernfield M., Götte M., Park P. W., Reizes O., Fitzgerald M. L., Lincecum J., Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68:729–777. doi: 10.1146/annurev.biochem.68.1.729. [DOI] [PubMed] [Google Scholar]
  5. Calabro A., Benavides M., Tammi M., Hascall V. C., Midura R. J. Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology. 2000 Mar;10(3):273–281. doi: 10.1093/glycob/10.3.273. [DOI] [PubMed] [Google Scholar]
  6. Chang Z., Meyer K., Rapraeger A. C., Friedl A. Differential ability of heparan sulfate proteoglycans to assemble the fibroblast growth factor receptor complex in situ. FASEB J. 2000 Jan;14(1):137–144. doi: 10.1096/fasebj.14.1.137. [DOI] [PubMed] [Google Scholar]
  7. Crawford B. E., Olson S. K., Esko J. D., Pinhal M. A. Cloning, Golgi localization, and enzyme activity of the full-length heparin/heparan sulfate-glucuronic acid C5-epimerase. J Biol Chem. 2001 Mar 12;276(24):21538–21543. doi: 10.1074/jbc.M100880200. [DOI] [PubMed] [Google Scholar]
  8. Delfert D. M., Conrad H. E. Preparation and high-performance liquid chromatography of 3'-phosphoadenosine-5'-phospho[35S]sulfate with a predetermined specific activity. Anal Biochem. 1985 Aug 1;148(2):303–310. doi: 10.1016/0003-2697(85)90233-7. [DOI] [PubMed] [Google Scholar]
  9. Desai U. R., Wang H. M., Linhardt R. J. Substrate specificity of the heparin lyases from Flavobacterium heparinum. Arch Biochem Biophys. 1993 Nov 1;306(2):461–468. doi: 10.1006/abbi.1993.1538. [DOI] [PubMed] [Google Scholar]
  10. Dhoot G. K., Gustafsson M. K., Ai X., Sun W., Standiford D. M., Emerson C. P., Jr Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Science. 2001 Aug 31;293(5535):1663–1666. doi: 10.1126/science.293.5535.1663. [DOI] [PubMed] [Google Scholar]
  11. Esko J. D., Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest. 2001 Jul;108(2):169–173. doi: 10.1172/JCI13530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forsberg E., Kjellén L. Heparan sulfate: lessons from knockout mice. J Clin Invest. 2001 Jul;108(2):175–180. doi: 10.1172/JCI13561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freeman C., Hopwood J. J. Human glucosamine-6-sulphatase deficiency. Diagnostic enzymology towards heparin-derived trisaccharide substrates. Biochem J. 1992 Mar 1;282(Pt 2):605–614. doi: 10.1042/bj2820605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guimond S., Maccarana M., Olwin B. B., Lindahl U., Rapraeger A. C. Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem. 1993 Nov 15;268(32):23906–23914. [PubMed] [Google Scholar]
  15. Habuchi H., Kobayashi M., Kimata K. Molecular characterization and expression of heparan-sulfate 6-sulfotransferase. Complete cDNA cloning in human and partial cloning in Chinese hamster ovary cells. J Biol Chem. 1998 Apr 10;273(15):9208–9213. doi: 10.1074/jbc.273.15.9208. [DOI] [PubMed] [Google Scholar]
  16. Habuchi H., Suzuki S., Saito T., Tamura T., Harada T., Yoshida K., Kimata K. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor. Biochem J. 1992 Aug 1;285(Pt 3):805–813. doi: 10.1042/bj2850805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Habuchi H., Tanaka M., Habuchi O., Yoshida K., Suzuki H., Ban K., Kimata K. The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J Biol Chem. 2000 Jan 28;275(4):2859–2868. doi: 10.1074/jbc.275.4.2859. [DOI] [PubMed] [Google Scholar]
  18. Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases. Biochim Biophys Acta. 2000 Apr 6;1474(2):115–127. doi: 10.1016/s0304-4165(00)00016-7. [DOI] [PubMed] [Google Scholar]
  19. Hashimoto Y., Orellana A., Gil G., Hirschberg C. B. Molecular cloning and expression of rat liver N-heparan sulfate sulfotransferase. J Biol Chem. 1992 Aug 5;267(22):15744–15750. [PubMed] [Google Scholar]
  20. Iozzo R. V. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J Clin Invest. 2001 Jul;108(2):165–167. doi: 10.1172/JCI13560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Iozzo R. V., San Antonio J. D. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest. 2001 Aug;108(3):349–355. doi: 10.1172/JCI13738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ito Y., Habuchi O. Purification and characterization of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase from the squid cartilage. J Biol Chem. 2000 Nov 3;275(44):34728–34736. doi: 10.1074/jbc.M909633199. [DOI] [PubMed] [Google Scholar]
  23. Kamimura K., Fujise M., Villa F., Izumi S., Habuchi H., Kimata K., Nakato H. Drosophila heparan sulfate 6-O-sulfotransferase (dHS6ST) gene. Structure, expression, and function in the formation of the tracheal system. J Biol Chem. 2001 Mar 8;276(20):17014–17021. doi: 10.1074/jbc.M011354200. [DOI] [PubMed] [Google Scholar]
  24. Kobayashi M., Habuchi H., Yoneda M., Habuchi O., Kimata K. Molecular cloning and expression of Chinese hamster ovary cell heparan-sulfate 2-sulfotransferase. J Biol Chem. 1997 May 23;272(21):13980–13985. doi: 10.1074/jbc.272.21.13980. [DOI] [PubMed] [Google Scholar]
  25. Kusche-Gullberg M., Eriksson I., Pikas D. S., Kjellén L. Identification and expression in mouse of two heparan sulfate glucosaminyl N-deacetylase/N-sulfotransferase genes. J Biol Chem. 1998 May 8;273(19):11902–11907. doi: 10.1074/jbc.273.19.11902. [DOI] [PubMed] [Google Scholar]
  26. Li J. P., Gong F., El Darwish K., Jalkanen M., Lindahl U. Characterization of the D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate. J Biol Chem. 2001 Mar 26;276(23):20069–20077. doi: 10.1074/jbc.M011783200. [DOI] [PubMed] [Google Scholar]
  27. Lindahl U., Kusche-Gullberg M., Kjellén L. Regulated diversity of heparan sulfate. J Biol Chem. 1998 Sep 25;273(39):24979–24982. doi: 10.1074/jbc.273.39.24979. [DOI] [PubMed] [Google Scholar]
  28. Liu J., Shworak N. W., Sinaÿ P., Schwartz J. J., Zhang L., Fritze L. M., Rosenberg R. D. Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities. J Biol Chem. 1999 Feb 19;274(8):5185–5192. doi: 10.1074/jbc.274.8.5185. [DOI] [PubMed] [Google Scholar]
  29. Ludwigs U., Elgavish A., Esko J. D., Meezan E., Rodén L. Reaction of unsaturated uronic acid residues with mercuric salts. Cleavage of the hyaluronic acid disaccharide 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose. Biochem J. 1987 Aug 1;245(3):795–804. doi: 10.1042/bj2450795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Matsuda Y., Harada Y. N., Natsuume-Sakai S., Lee K., Shiomi T., Chapman V. M. Location of the mouse complement factor H gene (cfh) by FISH analysis and replication R-banding. Cytogenet Cell Genet. 1992;61(4):282–285. doi: 10.1159/000133423. [DOI] [PubMed] [Google Scholar]
  31. Nader H. B., Porcionatto M. A., Tersariol I. L., Pinhal M. A., Oliveira F. W., Moraes C. T., Dietrich C. P. Purification and substrate specificity of heparitinase I and heparitinase II from Flavobacterium heparinum. Analyses of the heparin and heparan sulfate degradation products by 13C NMR spectroscopy. J Biol Chem. 1990 Oct 5;265(28):16807–16813. [PubMed] [Google Scholar]
  32. Ohtake S., Ito Y., Fukuta M., Habuchi O. Human N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase cDNA is related to human B cell recombination activating gene-associated gene. J Biol Chem. 2001 Sep 25;276(47):43894–43900. doi: 10.1074/jbc.M104922200. [DOI] [PubMed] [Google Scholar]
  33. Orellana A., Hirschberg C. B., Wei Z., Swiedler S. J., Ishihara M. Molecular cloning and expression of a glycosaminoglycan N-acetylglucosaminyl N-deacetylase/N-sulfotransferase from a heparin-producing cell line. J Biol Chem. 1994 Jan 21;269(3):2270–2276. [PubMed] [Google Scholar]
  34. Ornitz D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays. 2000 Feb;22(2):108–112. doi: 10.1002/(SICI)1521-1878(200002)22:2<108::AID-BIES2>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  35. Pellegrini L., Burke D. F., von Delft F., Mulloy B., Blundell T. L. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Nature. 2000 Oct 26;407(6807):1029–1034. doi: 10.1038/35039551. [DOI] [PubMed] [Google Scholar]
  36. Perrimon N., Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature. 2000 Apr 13;404(6779):725–728. doi: 10.1038/35008000. [DOI] [PubMed] [Google Scholar]
  37. Pye D. A., Vives R. R., Turnbull J. E., Hyde P., Gallagher J. T. Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem. 1998 Sep 4;273(36):22936–22942. doi: 10.1074/jbc.273.36.22936. [DOI] [PubMed] [Google Scholar]
  38. Rosenberg R. D., Shworak N. W., Liu J., Schwartz J. J., Zhang L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J Clin Invest. 1997 May 1;99(9):2062–2070. doi: 10.1172/JCI119377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schlessinger J., Plotnikov A. N., Ibrahimi O. A., Eliseenkova A. V., Yeh B. K., Yayon A., Linhardt R. J., Mohammadi M. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell. 2000 Sep;6(3):743–750. doi: 10.1016/s1097-2765(00)00073-3. [DOI] [PubMed] [Google Scholar]
  40. Selleck S. B. Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet. 2000 May;16(5):206–212. doi: 10.1016/s0168-9525(00)01997-1. [DOI] [PubMed] [Google Scholar]
  41. Shworak N. W., Liu J., Fritze L. M., Schwartz J. J., Zhang L., Logeart D., Rosenberg R. D. Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase. J Biol Chem. 1997 Oct 31;272(44):28008–28019. doi: 10.1074/jbc.272.44.28008. [DOI] [PubMed] [Google Scholar]
  42. Shworak N. W., Liu J., Petros L. M., Zhang L., Kobayashi M., Copeland N. G., Jenkins N. A., Rosenberg R. D. Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cdnas and identification of distinct genomic loci. J Biol Chem. 1999 Feb 19;274(8):5170–5184. doi: 10.1074/jbc.274.8.5170. [DOI] [PubMed] [Google Scholar]
  43. Sugahara K., Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol. 2000 Oct;10(5):518–527. doi: 10.1016/s0959-440x(00)00125-1. [DOI] [PubMed] [Google Scholar]
  44. Toyoda H., Kinoshita-Toyoda A., Fox B., Selleck S. B. Structural analysis of glycosaminoglycans in animals bearing mutations in sugarless, sulfateless, and tout-velu. Drosophila homologues of vertebrate genes encoding glycosaminoglycan biosynthetic enzymes. J Biol Chem. 2000 Jul 21;275(29):21856–21861. doi: 10.1074/jbc.M003540200. [DOI] [PubMed] [Google Scholar]
  45. Tumova S., Woods A., Couchman J. R. Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol. 2000 Mar;32(3):269–288. doi: 10.1016/s1357-2725(99)00116-8. [DOI] [PubMed] [Google Scholar]
  46. Zhang L., Beeler D. L., Lawrence R., Lech M., Liu J., Davis J. C., Shriver Z., Sasisekharan R., Rosenberg R. D. 6-O-sulfotransferase-1 represents a critical enzyme in the anticoagulant heparan sulfate biosynthetic pathway. J Biol Chem. 2001 Sep 10;276(45):42311–42321. doi: 10.1074/jbc.M101441200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES