Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):183–189. doi: 10.1042/BJ20021205

Human mismatch-repair protein MutL homologue 1 (MLH1) interacts with Escherichia coli MutL and MutS in vivo and in vitro: a simple genetic system to assay MLH1 function.

Barbara Quaresima 1, Pietro Alifano 1, Pierfrancesco Tassone 1, Enrico V Avvedimento 1, Francesco S Costanzo 1, Salvatore Venuta 1
PMCID: PMC1223262  PMID: 12513688

Abstract

A simple genetic system has been developed to test the effect of over-expression of wild-type or mutated human MutL homologue 1 (hMLH1) proteins on methyl-directed mismatch repair (MMR) in Escherichia coli. The system relies on detection of Lac(+) revertants using MMR-proficient or MMR-deficient E. coli strains carrying a lac +1 frameshift mutation expressing hMLH1 proteins. We report that expression of wild-type hMLH1 protein causes an approx. 19-fold increase in mutation rates. The mutator phenotype was due to the ability of hMLH1 protein to interact with bacterial MutL and MutS proteins, thereby interfering with the formation of complexes between MMR proteins and mismatched DNA. Conversely, expression of proteins encoded by alleles deriving from hereditary-non-polyposis-colon-cancer (HNPCC) families decreases mutation rates, depending on the specific amino acid substitutions. These effects parallel the MutL-and MutS-binding and ATP-binding/hydrolysis activities of the mutated proteins.

Full Text

The Full Text of this article is available as a PDF (219.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Mol Cell Biol. 1996 Oct;16(10):5604–5615. doi: 10.1128/mcb.16.10.5604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronshtam A., Marinus M. G. Dominant negative mutator mutations in the mutL gene of Escherichia coli. Nucleic Acids Res. 1996 Jul 1;24(13):2498–2504. doi: 10.1093/nar/24.13.2498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ban C., Junop M., Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell. 1999 Apr 2;97(1):85–97. doi: 10.1016/s0092-8674(00)80717-5. [DOI] [PubMed] [Google Scholar]
  4. Ban C., Yang W. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell. 1998 Nov 13;95(4):541–552. doi: 10.1016/s0092-8674(00)81621-9. [DOI] [PubMed] [Google Scholar]
  5. Buermeyer A. B., Deschênes S. M., Baker S. M., Liskay R. M. Mammalian DNA mismatch repair. Annu Rev Genet. 1999;33:533–564. doi: 10.1146/annurev.genet.33.1.533. [DOI] [PubMed] [Google Scholar]
  6. Drotschmann K., Aronshtam A., Fritz H. J., Marinus M. G. The Escherichia coli MutL protein stimulates binding of Vsr and MutS to heteroduplex DNA. Nucleic Acids Res. 1998 Feb 15;26(4):948–953. doi: 10.1093/nar/26.4.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feng G., Tsui H. C., Winkler M. E. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol. 1996 Apr;178(8):2388–2396. doi: 10.1128/jb.178.8.2388-2396.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fishel R., Lescoe M. K., Rao M. R., Copeland N. G., Jenkins N. A., Garber J., Kane M., Kolodner R. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993 Dec 3;75(5):1027–1038. doi: 10.1016/0092-8674(93)90546-3. [DOI] [PubMed] [Google Scholar]
  9. Flores-Rozas H., Kolodner R. D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12404–12409. doi: 10.1073/pnas.95.21.12404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galio L., Bouquet C., Brooks P. ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. Nucleic Acids Res. 1999 Jun 1;27(11):2325–2331. doi: 10.1093/nar/27.11.2325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gu L., Hong Y., McCulloch S., Watanabe H., Li G. M. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res. 1998 Mar 1;26(5):1173–1178. doi: 10.1093/nar/26.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Habraken Y., Sung P., Prakash L., Prakash S. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. J Biol Chem. 1998 Apr 17;273(16):9837–9841. doi: 10.1074/jbc.273.16.9837. [DOI] [PubMed] [Google Scholar]
  13. Hall M. C., Jordan J. R., Matson S. W. Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. EMBO J. 1998 Mar 2;17(5):1535–1541. doi: 10.1093/emboj/17.5.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Hastings P. J., Winkler M. E., Rosenberg S. M. Mismatch repair is diminished during stationary-phase mutation. Mutat Res. 1999 Jul;437(1):51–60. [PubMed] [Google Scholar]
  15. Jiricny J., Nyström-Lahti M. Mismatch repair defects in cancer. Curr Opin Genet Dev. 2000 Apr;10(2):157–161. doi: 10.1016/s0959-437x(00)00066-6. [DOI] [PubMed] [Google Scholar]
  16. Johnson R. E., Kovvali G. K., Prakash L., Prakash S. Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability. J Biol Chem. 1996 Mar 29;271(13):7285–7288. doi: 10.1074/jbc.271.13.7285. [DOI] [PubMed] [Google Scholar]
  17. Kolodner R. D., Marsischky G. T. Eukaryotic DNA mismatch repair. Curr Opin Genet Dev. 1999 Feb;9(1):89–96. doi: 10.1016/s0959-437x(99)80013-6. [DOI] [PubMed] [Google Scholar]
  18. Lieb M., Allen E., Read D. Very short patch mismatch repair in phage lambda: repair sites and length of repair tracts. Genetics. 1986 Dec;114(4):1041–1060. doi: 10.1093/genetics/114.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Longerich S., Galloway A. M., Harris R. S., Wong C., Rosenberg S. M. Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12017–12020. doi: 10.1073/pnas.92.26.12017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lynch H. T. Hereditary nonpolyposis colorectal cancer (HNPCC). Cytogenet Cell Genet. 1999;86(2):130–135. doi: 10.1159/000015365. [DOI] [PubMed] [Google Scholar]
  22. Marsischky G. T., Filosi N., Kane M. F., Kolodner R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996 Feb 15;10(4):407–420. doi: 10.1101/gad.10.4.407. [DOI] [PubMed] [Google Scholar]
  23. Mechanic L. E., Frankel B. A., Matson S. W. Escherichia coli MutL loads DNA helicase II onto DNA. J Biol Chem. 2000 Dec 8;275(49):38337–38346. doi: 10.1074/jbc.M006268200. [DOI] [PubMed] [Google Scholar]
  24. Modrich P. DNA mismatch correction. Annu Rev Biochem. 1987;56:435–466. doi: 10.1146/annurev.bi.56.070187.002251. [DOI] [PubMed] [Google Scholar]
  25. Modrich P., Lahue R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem. 1996;65:101–133. doi: 10.1146/annurev.bi.65.070196.000533. [DOI] [PubMed] [Google Scholar]
  26. Nyström-Lahti Minna, Perrera Claudia, Räschle Markus, Panyushkina-Seiler Elena, Marra Giancarlo, Curci Anna, Quaresima Barbara, Costanzo Francesco, D'Urso Michele, Venuta Salvatore. Functional analysis of MLH1 mutations linked to hereditary nonpolyposis colon cancer. Genes Chromosomes Cancer. 2002 Feb;33(2):160–167. [PubMed] [Google Scholar]
  27. Pang Q., Prolla T. A., Liskay R. M. Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol Cell Biol. 1997 Aug;17(8):4465–4473. doi: 10.1128/mcb.17.8.4465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peltomäki P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum Mol Genet. 2001 Apr;10(7):735–740. doi: 10.1093/hmg/10.7.735. [DOI] [PubMed] [Google Scholar]
  29. Peltomäki P., Vasen H. F. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology. 1997 Oct;113(4):1146–1158. doi: 10.1053/gast.1997.v113.pm9322509. [DOI] [PubMed] [Google Scholar]
  30. Prolla T. A., Christie D. M., Liskay R. M. Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol. 1994 Jan;14(1):407–415. doi: 10.1128/mcb.14.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Prolla T. A., Pang Q., Alani E., Kolodner R. D., Liskay R. M. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science. 1994 Aug 19;265(5175):1091–1093. doi: 10.1126/science.8066446. [DOI] [PubMed] [Google Scholar]
  32. Quaresima B., Grandinetti C., Baudi F., Tassone P., Barbieri V., Conforti S., Avvedimento E. V., Costanzo F., Venuta S. Hereditary nonpolyposis coloretal cancer: identification of novel germline mutations in two kindreds not fulfulling the Amsterdam criteria. Mutations in brief no. 203. Online. Hum Mutat. 1998;12(6):433–433. doi: 10.1002/(SICI)1098-1004(1998)12:6<433::AID-HUMU13>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  33. Shibata D., Aaltonen L. A. Genetic predisposition and somatic diversification in tumor development and progression. Adv Cancer Res. 2001;80:83–114. doi: 10.1016/s0065-230x(01)80013-0. [DOI] [PubMed] [Google Scholar]
  34. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  35. Tran P. T., Liskay R. M. Functional studies on the candidate ATPase domains of Saccharomyces cerevisiae MutLalpha. Mol Cell Biol. 2000 Sep;20(17):6390–6398. doi: 10.1128/mcb.20.17.6390-6398.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vasen H. F., Mecklin J. P., Khan P. M., Lynch H. T. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum. 1991 May;34(5):424–425. doi: 10.1007/BF02053699. [DOI] [PubMed] [Google Scholar]
  37. Wong I., Lohman T. M. A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5428–5432. doi: 10.1073/pnas.90.12.5428. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES