Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):29–38. doi: 10.1042/BJ20020728

Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.

Octavio Monasterio 1, María Luz Cárdenas 1
PMCID: PMC1223263  PMID: 12513690

Abstract

The kinetic mechanism of rat liver hexokinase D ('glucokinase') was studied under non-co-operative conditions with 2-deoxyglucose as substrate, chosen to avoid uncertainties derived from the co-operativity observed with the physiological substrate, glucose. The enzyme shows hyperbolic kinetics with respect to both 2-deoxyglucose and MgATP(2-), and the reaction follows a ternary-complex mechanism with K (m)=19.2+/-2.3 mM for 2-deoxyglucose and 0.56+/-0.05 mM for MgATP(2-). Product inhibition by MgADP(-) was mixed with respect to MgATP(2-) and was largely competitive with respect to 2-deoxyglucose, suggesting an ordered mechanism with 2-deoxyglucose as first substrate and MgADP(-) as last product. Dead-end inhibition by N -acetylglucosamine, AMP and the inert complex CrATP [the complex of ATP with chromium in the 3+ oxidation state, i.e. Cr(III)-ATP], studied with respect to both substrates, also supports an ordered mechanism with 2-deoxyglucose as first substrate. AMP appears to bind both to the free enzyme and to the E*dGlc complex. Experiments involving protection against inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) support the existence of the E*MgADP(-) and E*AMP complexes suggested by the kinetic studies. MgADP(-), AMP, 2-deoxyglucose, glucose and mannose were strong protectors, supporting the existence of binary complexes with the enzyme. Glucose 6-phosphate failed to protect, even at concentrations as high as 100 mM, and MgATP(2-) protected only slightly (12%). The inactivation results support the postulated ordered mechanism with 2-deoxyglucose as first substrate and MgADP(-) as last product. In addition, the straight-line dependence observed when the reciprocal value of the inactivation constant was plotted against the sugar-ligand concentration supports the view that there is just one sugar-binding site in hexokinase D.

Full Text

The Full Text of this article is available as a PDF (197.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agius L., Stubbs M. Investigation of the mechanism by which glucose analogues cause translocation of glucokinase in hepatocytes: evidence for two glucose binding sites. Biochem J. 2000 Mar 1;346(Pt 2):413–421. [PMC free article] [PubMed] [Google Scholar]
  2. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cornish-Bowden A., Endrenyi L. Robust regression of enzyme kinetic data. Biochem J. 1986 Feb 15;234(1):21–29. doi: 10.1042/bj2340021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cortés A., Cascante M., Cárdenas M. L., Cornish-Bowden A. Relationships between inhibition constants, inhibitor concentrations for 50% inhibition and types of inhibition: new ways of analysing data. Biochem J. 2001 Jul 1;357(Pt 1):263–268. doi: 10.1042/0264-6021:3570263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cárdenas M. L., Cornish-Bowden A., Ureta T. Evolution and regulatory role of the hexokinases. Biochim Biophys Acta. 1998 Mar 5;1401(3):242–264. doi: 10.1016/s0167-4889(97)00150-x. [DOI] [PubMed] [Google Scholar]
  6. Cárdenas M. L., Rabajille E., Niemeyer H. Fructose is a good substrate for rat liver 'glucokinase' (hexokinase D). Biochem J. 1984 Sep 1;222(2):363–370. doi: 10.1042/bj2220363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cárdenas M. L., Rabajille E., Niemeyer H. Kinetic cooperativity of glucokinase with glucose. Arch Biol Med Exp (Santiago) 1979 Dec;12(5):571–580. [PubMed] [Google Scholar]
  8. Cárdenas M. L., Rabajille E., Niemeyer H. Suppression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model. Eur J Biochem. 1984 Nov 15;145(1):163–171. doi: 10.1111/j.1432-1033.1984.tb08536.x. [DOI] [PubMed] [Google Scholar]
  9. Cárdenas M. L., Rabajille E., Trayer I. P., Niemeyer H. Cooperative interactions in hexokinase D ("glucokinase"). Kinetic and fluorescence studies. Arch Biol Med Exp (Santiago) 1985 Dec;18(3-4):273–284. [PubMed] [Google Scholar]
  10. DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DePamphilis M. L., Cleland W. W. Preparation and properties of chromium (3)-nucleotide complexes for use in the study of enzyme mechanisms. Biochemistry. 1973 Sep 11;12(19):3714–3724. doi: 10.1021/bi00743a022. [DOI] [PubMed] [Google Scholar]
  12. Fromm H. J., Ning J. Kinetic studies of solubilized brain hexokinase with D-fructose as a substrate. Biochem Biophys Res Commun. 1968 Aug 21;32(4):672–677. doi: 10.1016/0006-291x(68)90291-x. [DOI] [PubMed] [Google Scholar]
  13. Gregoriou M., Trayer I. P., Cornish-Bowden A. Isotope-exchange evidence for an ordered mechanism for rat-liver glucokinase, a monomeric cooperative enzyme. Biochemistry. 1981 Feb 3;20(3):499–506. doi: 10.1021/bi00506a009. [DOI] [PubMed] [Google Scholar]
  14. Gregoriou M., Trayer I. P., Cornish-Bowden A. Isotope-exchange evidence that glucose 6-phosphate inhibits rat-muscle hexokinase II at an allosteric site. Eur J Biochem. 1983 Aug 1;134(2):283–288. doi: 10.1111/j.1432-1033.1983.tb07563.x. [DOI] [PubMed] [Google Scholar]
  15. Gulbinsky J. S., Cleland W. W. Kinetic studies of Escherichia coli galactokinase. Biochemistry. 1968 Feb;7(2):566–575. doi: 10.1021/bi00842a009. [DOI] [PubMed] [Google Scholar]
  16. Hsieh P. C., Kowalczyk T. H., Phillips N. F. Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis. Biochemistry. 1996 Jul 30;35(30):9772–9781. doi: 10.1021/bi9528659. [DOI] [PubMed] [Google Scholar]
  17. Matschinsky F. M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes. 1990 Jun;39(6):647–652. doi: 10.2337/diab.39.6.647. [DOI] [PubMed] [Google Scholar]
  18. Meglasson M. D., Burch P. T., Berner D. K., Najafi H., Vogin A. P., Matschinsky F. M. Chromatographic resolution and kinetic characterization of glucokinase from islets of Langerhans. Proc Natl Acad Sci U S A. 1983 Jan;80(1):85–89. doi: 10.1073/pnas.80.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morrison J. F., Cleland W. W. Isotope exchange studies of the mechanism of the reaction catalyzed by adenosine triphosphate: creatine phosphotransferase. J Biol Chem. 1966 Feb 10;241(3):673–683. [PubMed] [Google Scholar]
  20. Moukil M. A., Veiga-da-Cunha M., Van Schaftingen E. Study of the regulatory properties of glucokinase by site-directed mutagenesis: conversion of glucokinase to an enzyme with high affinity for glucose. Diabetes. 2000 Feb;49(2):195–201. doi: 10.2337/diabetes.49.2.195. [DOI] [PubMed] [Google Scholar]
  21. Moukil M. A., Veiga-da-Cunha M., Van Schaftingen E. Study of the regulatory properties of glucokinase by site-directed mutagenesis: conversion of glucokinase to an enzyme with high affinity for glucose. Diabetes. 2000 Feb;49(2):195–201. doi: 10.2337/diabetes.49.2.195. [DOI] [PubMed] [Google Scholar]
  22. Neet K. E., Keenan R. P., Tippett P. S. Observation of a kinetic slow transition in monomeric glucokinase. Biochemistry. 1990 Jan 23;29(3):770–777. doi: 10.1021/bi00455a026. [DOI] [PubMed] [Google Scholar]
  23. Niemeyer H., de la Luz Cárdenas M., Rabajille E., Ureta T., Clark-Turri L., Peñaranda J. Sigmoidal kinetics of glucokinase. Enzyme. 1975;20(6):321–333. doi: 10.1159/000458957. [DOI] [PubMed] [Google Scholar]
  24. Pollard-Knight D., Connolly B. A., Cornish-Bowden A., Trayer I. P. Effect of glycerol on glucokinase activity: loss of cooperative behavior with respect to glucose. Arch Biochem Biophys. 1985 Mar;237(2):328–334. doi: 10.1016/0003-9861(85)90284-x. [DOI] [PubMed] [Google Scholar]
  25. Pollard-Knight D., Cornish-Bowden A. Kinetics of hexokinase D ('glucokinase') with inosine triphosphate as phosphate donor. Loss of kinetic co-operativity with respect to glucose. Biochem J. 1987 Aug 1;245(3):625–629. doi: 10.1042/bj2450625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. St Charles R., Harrison R. W., Bell G. I., Pilkis S. J., Weber I. T. Molecular model of human beta-cell glucokinase built by analogy to the crystal structure of yeast hexokinase B. Diabetes. 1994 Jun;43(6):784–791. doi: 10.2337/diab.43.6.784. [DOI] [PubMed] [Google Scholar]
  27. Stoffel M., Froguel P., Takeda J., Zouali H., Vionnet N., Nishi S., Weber I. T., Harrison R. W., Pilkis S. J., Lesage S. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7698–7702. doi: 10.1073/pnas.89.16.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Storer A. C., Cornish-Bowden A. Concentration of MgATP2- and other ions in solution. Calculation of the true concentrations of species present in mixtures of associating ions. Biochem J. 1976 Oct 1;159(1):1–5. doi: 10.1042/bj1590001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Storer A. C., Cornish-Bowden A. Kinetic evidence for a 'mnemonical' mechanism for rat liver glucokinase. Biochem J. 1977 Jul 1;165(1):61–69. doi: 10.1042/bj1650061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Storer A. C., Cornish-Bowden A. Kinetics of rat liver glucokinase. Co-operative interactions with glucose at physiologically significant concentrations. Biochem J. 1976 Oct 1;159(1):7–14. doi: 10.1042/bj1590007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tiedge M., Richter T., Lenzen S. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys. 2000 Mar 15;375(2):251–260. doi: 10.1006/abbi.1999.1666. [DOI] [PubMed] [Google Scholar]
  32. Tsai H. J., Wilson J. E. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites. Arch Biochem Biophys. 1996 May 1;329(1):17–23. doi: 10.1006/abbi.1996.0186. [DOI] [PubMed] [Google Scholar]
  33. Van Schaftingen E., Detheux M., Veiga da Cunha M. Short-term control of glucokinase activity: role of a regulatory protein. FASEB J. 1994 Apr 1;8(6):414–419. doi: 10.1096/fasebj.8.6.8168691. [DOI] [PubMed] [Google Scholar]
  34. Zepeda S., Monasterio O., Ureta T. NADP(+)-dependent D-xylose dehydrogenase from pig liver. Purification and properties. Biochem J. 1990 Mar 15;266(3):637–644. doi: 10.1042/bj2660637. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES