Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):205–210. doi: 10.1042/BJ20021603

A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity.

Masashi Yajima 1, Masatoshi Takada 1, Nahoko Takahashi 1, Haruhisa Kikuchi 1, Shunji Natori 1, Yoshiteru Oshima 1, Shoichiro Kurata 1
PMCID: PMC1223264  PMID: 12513692

Abstract

Innate immunity is the first line of defence against infectious micro-organisms, and the basic mechanisms of pathogen recognition and response activation are evolutionarily conserved. In mammals, the innate immune response in combination with antigen-specific recognition is required for the activation of adaptive immunity. Therefore, innate immunity is a pharmaceutical target for the development of immune regulators. Here, for the purpose of pharmaceutical screening, we established an in vitro culture based on the innate immune response of Drosophila. The in vitro system is capable of measuring lipopolysaccharide (LPS)-dependent activation of the immune deficiency (imd) pathway, which is similar to the tumour necrosis factor signalling pathway in mammals. Screening revealed that well-known inhibitors of phospholipase A(2) (PLA(2)), dexamethasone (Dex) and p-bromophenacyl bromide (BPB) inhibit LPS-dependent activation of the imd pathway. The inhibitory effects of Dex and BPB were suppressed by the addition of an excess of three (arachidonic acid, eicosapentaenoic acid and gamma-linolenic acid) of the fatty acids so far tested. Arachidonic acid, however, did not activate the imd pathway when used as the sole agonist. These findings indicate that PLA(2) participates in LPS-dependent activation of the imd pathway via the generation of arachidonic acid and other mediators, but requires additional signalling from LPS stimulation. Moreover, PLA(2) was activated in response to bacterial infection in Sarcophaga. These results suggest a functional link between the PLA(2)-generated fatty acid cascade and the LPS-stimulated imd pathway in insect immunity.

Full Text

The Full Text of this article is available as a PDF (194.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anthonsen M. W., Solhaug A., Johansen B. Functional coupling between secretory and cytosolic phospholipase A2 modulates tumor necrosis factor-alpha- and interleukin-1beta-induced NF-kappa B activation. J Biol Chem. 2001 Jun 4;276(32):30527–30536. doi: 10.1074/jbc.M008481200. [DOI] [PubMed] [Google Scholar]
  2. Choe Kwang-Min, Werner Thomas, Stöven Svenja, Hultmark Dan, Anderson Kathryn V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science. 2002 Feb 28;296(5566):359–362. doi: 10.1126/science.1070216. [DOI] [PubMed] [Google Scholar]
  3. Ferrandon D., Jung A. C., Criqui M., Lemaitre B., Uttenweiler-Joseph S., Michaut L., Reichhart J., Hoffmann J. A. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 1998 Aug 10;17(5):1217–1227. doi: 10.1093/emboj/17.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gottar Marie, Gobert Vanessa, Michel Tatiana, Belvin Marcia, Duyk Geoffrey, Hoffmann Jules A., Ferrandon Dominique, Royet Julien. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature. 2002 Mar 24;416(6881):640–644. doi: 10.1038/nature734. [DOI] [PubMed] [Google Scholar]
  5. Hedengren M., Asling B., Dushay M. S., Ando I., Ekengren S., Wihlborg M., Hultmark D. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell. 1999 Nov;4(5):827–837. doi: 10.1016/s1097-2765(00)80392-5. [DOI] [PubMed] [Google Scholar]
  6. Hirabayashi T., Shimizu T. Localization and regulation of cytosolic phospholipase A(2). Biochim Biophys Acta. 2000 Oct 31;1488(1-2):124–138. doi: 10.1016/s1388-1981(00)00115-3. [DOI] [PubMed] [Google Scholar]
  7. Hoffmann J. A., Kafatos F. C., Janeway C. A., Ezekowitz R. A. Phylogenetic perspectives in innate immunity. Science. 1999 May 21;284(5418):1313–1318. doi: 10.1126/science.284.5418.1313. [DOI] [PubMed] [Google Scholar]
  8. Hoffmann Jules A., Reichhart Jean-Marc. Drosophila innate immunity: an evolutionary perspective. Nat Immunol. 2002 Feb;3(2):121–126. doi: 10.1038/ni0202-121. [DOI] [PubMed] [Google Scholar]
  9. Janeway C. A., Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13. doi: 10.1101/sqb.1989.054.01.003. [DOI] [PubMed] [Google Scholar]
  10. Jurenka RA, Pedibhotla VK, Stanley DW. Prostaglandin production in response to a bacterial infection in true armyworm larvae . Arch Insect Biochem Physiol. 1999;41(4):225–232. doi: 10.1002/(SICI)1520-6327(1999)41:4<225::AID-ARCH6>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  11. Khush R. S., Leulier F., Lemaitre B. Drosophila immunity: two paths to NF-kappaB. Trends Immunol. 2001 May;22(5):260–264. doi: 10.1016/s1471-4906(01)01887-7. [DOI] [PubMed] [Google Scholar]
  12. Kurata S., Saito H., Natori S. The 29-kDa hemocyte proteinase dissociates fat body at metamorphosis of Sarcophaga. Dev Biol. 1992 Sep;153(1):115–121. doi: 10.1016/0012-1606(92)90096-y. [DOI] [PubMed] [Google Scholar]
  13. Lemaitre B., Kromer-Metzger E., Michaut L., Nicolas E., Meister M., Georgel P., Reichhart J. M., Hoffmann J. A. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465–9469. doi: 10.1073/pnas.92.21.9465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lemaitre B., Nicolas E., Michaut L., Reichhart J. M., Hoffmann J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996 Sep 20;86(6):973–983. doi: 10.1016/s0092-8674(00)80172-5. [DOI] [PubMed] [Google Scholar]
  15. Lemaitre B., Reichhart J. M., Hoffmann J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614–14619. doi: 10.1073/pnas.94.26.14614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Medzhitov Ruslan, Janeway Charles A., Jr Decoding the patterns of self and nonself by the innate immune system. Science. 2002 Apr 12;296(5566):298–300. doi: 10.1126/science.1068883. [DOI] [PubMed] [Google Scholar]
  17. Meng X., Khanuja B. S., Ip Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev. 1999 Apr 1;13(7):792–797. doi: 10.1101/gad.13.7.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michel T., Reichhart J. M., Hoffmann J. A., Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 2001 Dec 13;414(6865):756–759. doi: 10.1038/414756a. [DOI] [PubMed] [Google Scholar]
  19. Miller J. S., Nguyen T., Stanley-Samuelson D. W. Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12418–12422. doi: 10.1073/pnas.91.26.12418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Morishima I., Yamano Y., Inoue K., Matsuo N. Eicosanoids mediate induction of immune genes in the fat body of the silkworm, Bombyx mori. FEBS Lett. 1997 Dec 8;419(1):83–86. doi: 10.1016/s0014-5793(97)01418-x. [DOI] [PubMed] [Google Scholar]
  21. Natori Y., Karasawa K., Arai H., Tamori-Natori Y., Nojima S. Partial purification and properties of phospholipase A2 from rat liver mitochondria. J Biochem. 1983 Feb;93(2):631–637. doi: 10.1093/oxfordjournals.jbchem.a134219. [DOI] [PubMed] [Google Scholar]
  22. Reichhart J. M., Meister M., Dimarcq J. L., Zachary D., Hoffmann D., Ruiz C., Richards G., Hoffmann J. A. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J. 1992 Apr;11(4):1469–1477. doi: 10.1002/j.1460-2075.1992.tb05191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rämet Mika, Manfruelli Pascal, Pearson Alan, Mathey-Prevot Bernard, Ezekowitz R. Alan B. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature. 2002 Mar 24;416(6881):644–648. doi: 10.1038/nature735. [DOI] [PubMed] [Google Scholar]
  24. Salzet M. Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol. 2001 Jun;22(6):285–288. doi: 10.1016/s1471-4906(01)01895-6. [DOI] [PubMed] [Google Scholar]
  25. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  26. Silverman N., Maniatis T. NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001 Sep 15;15(18):2321–2342. doi: 10.1101/gad.909001. [DOI] [PubMed] [Google Scholar]
  27. Stanley-Samuelson D. W., Jensen E., Nickerson K. W., Tiebel K., Ogg C. L., Howard R. W. Insect immune response to bacterial infection is mediated by eicosanoids. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1064–1068. doi: 10.1073/pnas.88.3.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stanley D. W. Eicosanoids mediate insect cellular immune reactions to bacterial infections. Adv Exp Med Biol. 1997;433:359–362. doi: 10.1007/978-1-4899-1810-9_77. [DOI] [PubMed] [Google Scholar]
  29. Takehana Aya, Katsuyama Tomonori, Yano Tamaki, Oshima Yoshiteru, Takada Haruhiko, Aigaki Toshiro, Kurata Shoichiro. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci U S A. 2002 Oct 1;99(21):13705–13710. doi: 10.1073/pnas.212301199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thommesen L., Sjursen W., Gåsvik K., Hanssen W., Brekke O. L., Skattebøl L., Holmeide A. K., Espevik T., Johansen B., Laegreid A. Selective inhibitors of cytosolic or secretory phospholipase A2 block TNF-induced activation of transcription factor nuclear factor-kappa B and expression of ICAM-1. J Immunol. 1998 Oct 1;161(7):3421–3430. [PubMed] [Google Scholar]
  31. Werner T., Liu G., Kang D., Ekengren S., Steiner H., Hultmark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13772–13777. doi: 10.1073/pnas.97.25.13772. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES