Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):39–48. doi: 10.1042/BJ20021569

Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2.

Gui-Ying Nie 1, Anne Hampton 1, Ying Li 1, Jock K Findlay 1, Lois A Salamonsen 1
PMCID: PMC1223265  PMID: 12513693

Abstract

In the present study, we identified an additional member of the human high-temperature requirement factor A (HtrA) protein family, called pregnancy-related serine protease or HtrA3, which was most highly expressed in the heart and placenta. We cloned the full-length sequences of two forms (long and short) of human HtrA3 mRNA, located the gene on chromosome 4p16.1, determined its genomic structure and revealed how the two mRNA variants are produced through alternative splicing. The alternative splicing was also verified by Northern blotting. Four distinct domains were found for the long form HtrA3 protein: (i) an insulin/insulin-like growth factor binding domain, (ii) a Kazal-type S protease-inhibitor domain, (iii) a trypsin protease domain and (iv) a PDZ domain. The short form is identical to the long form except it lacks the PDZ domain. Comparison of all members of human HtrA proteins, including their isoforms, suggests that both isoforms of HtrA3 represent active serine proteases, that they may have different substrate specificities and that HtrA3 may have similar functions to HtrA1. All three HtrA family members showed very different mRNA-expression patterns in 76 human tissues, indicating a specific function for each. Interestingly, both HtrA1 and HtrA3 are highly expressed in the placenta. Identification of the tissue-specific function of each HtrA family member is clearly of importance.

Full Text

The Full Text of this article is available as a PDF (487.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aplin J. Maternal influences on placental development. Semin Cell Dev Biol. 2000 Apr;11(2):115–125. doi: 10.1006/scdb.2000.0157. [DOI] [PubMed] [Google Scholar]
  2. Barker D. J., Clark P. M. Fetal undernutrition and disease in later life. Rev Reprod. 1997 May;2(2):105–112. doi: 10.1530/ror.0.0020105. [DOI] [PubMed] [Google Scholar]
  3. Clausen Tim, Southan Chris, Ehrmann Michael. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell. 2002 Sep;10(3):443–455. doi: 10.1016/s1097-2765(02)00658-5. [DOI] [PubMed] [Google Scholar]
  4. Clemmons D. R. Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol. 1998 May 25;140(1-2):19–24. doi: 10.1016/s0303-7207(98)00024-0. [DOI] [PubMed] [Google Scholar]
  5. Constância Miguel, Hemberger Myriam, Hughes Jennifer, Dean Wendy, Ferguson-Smith Anne, Fundele Reinald, Stewart Francesca, Kelsey Gavin, Fowden Abigail, Sibley Colin. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002 Jun 27;417(6892):945–948. doi: 10.1038/nature00819. [DOI] [PubMed] [Google Scholar]
  6. Cross J. C. Genetic insights into trophoblast differentiation and placental morphogenesis. Semin Cell Dev Biol. 2000 Apr;11(2):105–113. doi: 10.1006/scdb.2000.0156. [DOI] [PubMed] [Google Scholar]
  7. Cross J. C., Werb Z., Fisher S. J. Implantation and the placenta: key pieces of the development puzzle. Science. 1994 Dec 2;266(5190):1508–1518. doi: 10.1126/science.7985020. [DOI] [PubMed] [Google Scholar]
  8. Deveraux Q. L., Reed J. C. IAP family proteins--suppressors of apoptosis. Genes Dev. 1999 Feb 1;13(3):239–252. doi: 10.1101/gad.13.3.239. [DOI] [PubMed] [Google Scholar]
  9. Faccio L., Fusco C., Chen A., Martinotti S., Bonventre J. V., Zervos A. S. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem. 2000 Jan 28;275(4):2581–2588. doi: 10.1074/jbc.275.4.2581. [DOI] [PubMed] [Google Scholar]
  10. Faccio L., Fusco C., Viel A., Zervos A. S. Tissue-specific splicing of Omi stress-regulated endoprotease leads to an inactive protease with a modified PDZ motif. Genomics. 2000 Sep 15;68(3):343–347. doi: 10.1006/geno.2000.6263. [DOI] [PubMed] [Google Scholar]
  11. Ferry R. J., Jr, Cerri R. W., Cohen P. Insulin-like growth factor binding proteins: new proteins, new functions. Horm Res. 1999;51(2):53–67. doi: 10.1159/000023315. [DOI] [PubMed] [Google Scholar]
  12. Gibson J. M., Aplin J. D., White A., Westwood M. Regulation of IGF bioavailability in pregnancy. Mol Hum Reprod. 2001 Jan;7(1):79–87. doi: 10.1093/molehr/7.1.79. [DOI] [PubMed] [Google Scholar]
  13. Gray C. W., Ward R. V., Karran E., Turconi S., Rowles A., Viglienghi D., Southan C., Barton A., Fantom K. G., West A. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem. 2000 Sep;267(18):5699–5710. doi: 10.1046/j.1432-1327.2000.01589.x. [DOI] [PubMed] [Google Scholar]
  14. Hu S. I., Carozza M., Klein M., Nantermet P., Luk D., Crowl R. M. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic cartilage. J Biol Chem. 1998 Dec 18;273(51):34406–34412. doi: 10.1074/jbc.273.51.34406. [DOI] [PubMed] [Google Scholar]
  15. Itoh M., Nagafuchi A., Yonemura S., Kitani-Yasuda T., Tsukita S., Tsukita S. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol. 1993 May;121(3):491–502. doi: 10.1083/jcb.121.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lawrence J. B., Oxvig C., Overgaard M. T., Sottrup-Jensen L., Gleich G. J., Hays L. G., Yates J. R., 3rd, Conover C. A. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):3149–3153. doi: 10.1073/pnas.96.6.3149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li Wenyu, Srinivasula Srinivasa M., Chai Jijie, Li Pingwei, Wu Jia-Wei, Zhang ZhiJia, Alnemri Emad S., Shi Yigong. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol. 2002 Jun;9(6):436–441. doi: 10.1038/nsb795. [DOI] [PubMed] [Google Scholar]
  18. Martins L. Miguel, Iaccarino Ingram, Tenev Tencho, Gschmeissner Stephen, Totty Nicholas F., Lemoine Nicholas R., Savopoulos John, Gray Carol W., Creasy Caretha L., Dingwall Colin. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 2001 Oct 15;277(1):439–444. doi: 10.1074/jbc.M109784200. [DOI] [PubMed] [Google Scholar]
  19. Myers S. E., Cheung P. T., Handwerger S., Chernausek S. D. Insulin-like growth factor-I (IGF-I) enhanced proteolysis of IGF-binding protein-4 in conditioned medium from primary cultures of human decidua: independence from IGF receptor binding. Endocrinology. 1993 Oct;133(4):1525–1531. doi: 10.1210/endo.133.4.7691578. [DOI] [PubMed] [Google Scholar]
  20. Nie G. Y., Li Y., Batten L., Griffiths B., Wang J., Findlay J. K., Salamonsen L. A. Uterine expression of alternatively spliced mRNAs of mouse splicing factor SC35 during early pregnancy. Mol Hum Reprod. 2000 Dec;6(12):1131–1139. doi: 10.1093/molehr/6.12.1131. [DOI] [PubMed] [Google Scholar]
  21. Nie G. Y., Li Y., Hampton A. L., Salamonsen L. A., Clements J. A., Findlay J. K. Identification of monoclonal nonspecific suppressor factor beta (mNSFbeta) as one of the genes differentially expressed at implantation sites compared to interimplantation sites in the mouse uterus. Mol Reprod Dev. 2000 Apr;55(4):351–363. doi: 10.1002/(SICI)1098-2795(200004)55:4<351::AID-MRD1>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  22. Nie G. Y., Li Y., Wang J., Minoura H., Findlay J. K., Salamonsen L. A. Complex regulation of calcium-binding protein D9k (calbindin-D(9k)) in the mouse uterus during early pregnancy and at the site of embryo implantation. Biol Reprod. 2000 Jan;62(1):27–36. doi: 10.1095/biolreprod62.1.27. [DOI] [PubMed] [Google Scholar]
  23. Page Nigel M., Kemp C. Fred, Butlin David J., Lowry Philip J. Placental peptides as markers of gestational disease. Reproduction. 2002 Apr;123(4):487–495. doi: 10.1530/rep.0.1230487. [DOI] [PubMed] [Google Scholar]
  24. Shi Z., Xu W., Loechel F., Wewer U. M., Murphy L. J. ADAM 12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J Biol Chem. 2000 Jun 16;275(24):18574–18580. doi: 10.1074/jbc.M002172200. [DOI] [PubMed] [Google Scholar]
  25. Southan C. A genomic perspective on human proteases. FEBS Lett. 2001 Jun 8;498(2-3):214–218. doi: 10.1016/s0014-5793(01)02490-5. [DOI] [PubMed] [Google Scholar]
  26. Suzuki Y., Imai Y., Nakayama H., Takahashi K., Takio K., Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. 2001 Sep;8(3):613–621. doi: 10.1016/s1097-2765(01)00341-0. [DOI] [PubMed] [Google Scholar]
  27. Verhagen Anne M., Silke John, Ekert Paul G., Pakusch Miha, Kaufmann Hitto, Connolly Lisa M., Day Catherine L., Tikoo Anjali, Burke Richard, Wrobel Carolyn. HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem. 2001 Oct 16;277(1):445–454. doi: 10.1074/jbc.M109891200. [DOI] [PubMed] [Google Scholar]
  28. Warburton C., Powell-Braxton L. Mouse models of IGF-I deficiency generated by gene targeting. Receptor. 1995 Spring;5(1):35–41. [PubMed] [Google Scholar]
  29. Woods D. F., Bryant P. J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell. 1991 Aug 9;66(3):451–464. doi: 10.1016/0092-8674(81)90009-x. [DOI] [PubMed] [Google Scholar]
  30. Zumbrunn J., Trueb B. Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett. 1996 Dec 2;398(2-3):187–192. doi: 10.1016/s0014-5793(96)01229-x. [DOI] [PubMed] [Google Scholar]
  31. van Loo G., van Gurp M., Depuydt B., Srinivasula S. M., Rodriguez I., Alnemri E. S., Gevaert K., Vandekerckhove J., Declercq W., Vandenabeele P. The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ. 2002 Jan;9(1):20–26. doi: 10.1038/sj.cdd.4400970. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES