Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):61–69. doi: 10.1042/BJ20021771

Effects of prenatal glucocorticoid exposure on cardiac calreticulin and calsequestrin protein expression during early development and in adulthood.

Maria L Langdown 1, Mark J Holness 1, Mary C Sugden 1
PMCID: PMC1223268  PMID: 12519072

Abstract

Overexpression of the conserved Ca(2+)-binding proteins calreticulin and calsequestrin impairs cardiac function, leading to premature death. Calreticulin is vital for embryonic development, but also impairs glucocorticoid action. Glucocorticoid overexposure during late fetal life causes intra-uterine growth retardation and programmed hypertension in adulthood. To determine whether intra-uterine growth retardation or programmed hypertension was associated with altered calreticulin or calsequestrin expression, effects of prenatal glucocorticoid overexposure (maternal dexamethasone treatment on days 15-21 of pregnancy) were examined during fetal life and postnatal development until adulthood (24 weeks). Dexamethasone (100 or 200 microg/kg of maternal body weight) was administered via osmotic pump. Calreticulin was detected as a 55 kDa band and calsequestrin as 55 and 63 kDa bands in 21 day fetal hearts. Only the 55 kDa calsequestrin band was detected postnatally. Prenatal glucocorticoid overexposure at the higher dose decreased calreticulin protein expression (26%; P <0.05) but increased calsequestrin protein expression, both 55 and 63 kDa bands, by 87% ( P <0.01) and 78% ( P <0.01); only the 55 kDa calsequestrin band was increased at the lower dose (66%; P <0.05). Offspring of dams treated at the lower dexamethasone dose were studied further. In control offspring, cardiac calreticulin protein expression declined between 2 and 3 weeks of age, and remained suppressed until adulthood. Cardiac calsequestrin protein expression increased 2-fold between fetal day 21 and postnatal day 1 and continued to increase until adulthood, at which time it was 3.4-fold higher ( P <0.001). Prenatal dexamethasone exposure minimally affected postnatal calsequestrin protein expression, but the postnatal decline in calreticulin protein expression was abrogated and calreticulin protein expression in adulthood was 2.2-fold increased ( P <0.001) compared with adult controls. In view of the known associations between cardiac calreticulin overexpression and impaired cardiac function, targeted up-regulation of calreticulin may contribute to the increased risk of adult heart disease introduced as a result of prenatal overexposure to glucocorticoids.

Full Text

The Full Text of this article is available as a PDF (263.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquila-Pastir Louise A., DiPaola Nicholas R., Matteo Rosalia G., Smedira Nicholas G., McCarthy Patrick M., Moravec Christine Schomisch. Quantitation and distribution of beta-tubulin in human cardiac myocytes. J Mol Cell Cardiol. 2002 Nov;34(11):1513–1523. doi: 10.1006/jmcc.2002.2105. [DOI] [PubMed] [Google Scholar]
  2. Arai M., Otsu K., MacLennan D. H., Periasamy M. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am J Physiol. 1992 Mar;262(3 Pt 1):C614–C620. doi: 10.1152/ajpcell.1992.262.3.C614. [DOI] [PubMed] [Google Scholar]
  3. Baksh S., Spamer C., Oikawa K., McCubbin W. D., Heilmann C., Kay C. M., Michalak M. Zn2+ binding to cardiac calsequestrin. Biochem Biophys Res Commun. 1995 Apr 6;209(1):310–315. doi: 10.1006/bbrc.1995.1504. [DOI] [PubMed] [Google Scholar]
  4. Barker D. J. In utero programming of cardiovascular disease. Theriogenology. 2000 Jan 15;53(2):555–574. doi: 10.1016/s0093-691x(99)00258-7. [DOI] [PubMed] [Google Scholar]
  5. Benediktsson R., Lindsay R. S., Noble J., Seckl J. R., Edwards C. R. Glucocorticoid exposure in utero: new model for adult hypertension. Lancet. 1993 Feb 6;341(8841):339–341. doi: 10.1016/0140-6736(93)90138-7. [DOI] [PubMed] [Google Scholar]
  6. Burns K., Duggan B., Atkinson E. A., Famulski K. S., Nemer M., Bleackley R. C., Michalak M. Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature. 1994 Feb 3;367(6462):476–480. doi: 10.1038/367476a0. [DOI] [PubMed] [Google Scholar]
  7. Cala S. E., Scott B. T., Jones L. R. Intralumenal sarcoplasmic reticulum Ca(2+)-binding proteins. Semin Cell Biol. 1990 Aug;1(4):265–275. [PubMed] [Google Scholar]
  8. Chatelain A., Dupouy J. P., Allaume P. Fetal-maternal adrenocorticotropin and corticosterone relationships in the rat: effects of maternal adrenalectomy. Endocrinology. 1980 Apr;106(4):1297–1303. [PubMed] [Google Scholar]
  9. Cho M. C., Rapacciuolo A., Koch W. J., Kobayashi Y., Jones L. R., Rockman H. A. Defective beta-adrenergic receptor signaling precedes the development of dilated cardiomyopathy in transgenic mice with calsequestrin overexpression. J Biol Chem. 1999 Aug 6;274(32):22251–22256. doi: 10.1074/jbc.274.32.22251. [DOI] [PubMed] [Google Scholar]
  10. Dodic M., May C. N., Wintour E. M., Coghlan J. P. An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin Sci (Lond) 1998 Feb;94(2):149–155. doi: 10.1042/cs0940149. [DOI] [PubMed] [Google Scholar]
  11. Enyedi P., Szabadkai G., Krause K. H., Lew D. P., Spät A. Inositol 1,4,5-trisphosphate binding sites copurify with the putative Ca-storage protein calreticulin in rat liver. Cell Calcium. 1993 Jun;14(6):485–492. doi: 10.1016/0143-4160(93)90007-s. [DOI] [PubMed] [Google Scholar]
  12. Fliegel L., Burns K., MacLennan D. H., Reithmeier R. A., Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Dec 25;264(36):21522–21528. [PubMed] [Google Scholar]
  13. Fliegel L., Burns K., Opas M., Michalak M. The high-affinity calcium binding protein of sarcoplasmic reticulum. Tissue distribution, and homology with calregulin. Biochim Biophys Acta. 1989 Jun 26;982(1):1–8. doi: 10.1016/0005-2736(89)90166-1. [DOI] [PubMed] [Google Scholar]
  14. Fliegel L., Leberer E., Green N. M., MacLennan D. H. The fast-twitch muscle calsequestrin isoform predominates in rabbit slow-twitch soleus muscle. FEBS Lett. 1989 Jan 2;242(2):297–300. doi: 10.1016/0014-5793(89)80488-0. [DOI] [PubMed] [Google Scholar]
  15. Fliegel L., Ohnishi M., Carpenter M. R., Khanna V. K., Reithmeier R. A., MacLennan D. H. Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1167–1171. doi: 10.1073/pnas.84.5.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Holaska J. M., Black B. E., Love D. C., Hanover J. A., Leszyk J., Paschal B. M. Calreticulin Is a receptor for nuclear export. J Cell Biol. 2001 Jan 8;152(1):127–140. doi: 10.1083/jcb.152.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holness M. J., Kraus A., Harris R. A., Sugden M. C. Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes. 2000 May;49(5):775–781. doi: 10.2337/diabetes.49.5.775. [DOI] [PubMed] [Google Scholar]
  18. Holness M. J., Langdown M. L., Sugden M. C. Early-life programming of susceptibility to dysregulation of glucose metabolism and the development of Type 2 diabetes mellitus. Biochem J. 2000 Aug 1;349(Pt 3):657–665. doi: 10.1042/bj3490657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Imanaka-Yoshida K., Amitani A., Ioshii S. O., Koyabu S., Yamakado T., Yoshida T. Alterations of expression and distribution of the Ca(2+)-storing proteins in endo/sarcoplasmic reticulum during differentiation of rat cardiomyocytes. J Mol Cell Cardiol. 1996 Mar;28(3):553–562. doi: 10.1006/jmcc.1996.0051. [DOI] [PubMed] [Google Scholar]
  20. Jones L. R., Suzuki Y. J., Wang W., Kobayashi Y. M., Ramesh V., Franzini-Armstrong C., Cleemann L., Morad M. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J Clin Invest. 1998 Apr 1;101(7):1385–1393. doi: 10.1172/JCI1362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koyabu S., Imanaka-Yoshida K., Ioshii S. O., Nakano T., Yoshida T. Switching of the dominant calcium sequestering protein during skeletal muscle differentiation. Cell Motil Cytoskeleton. 1994;29(3):259–270. doi: 10.1002/cm.970290309. [DOI] [PubMed] [Google Scholar]
  22. Langdown M. L., Holness M. J., Sugden M. C. Early growth retardation induced by excessive exposure to glucocorticoids in utero selectively increases cardiac GLUT1 protein expression and Akt/protein kinase B activity in adulthood. J Endocrinol. 2001 Apr;169(1):11–22. doi: 10.1677/joe.0.1690011. [DOI] [PubMed] [Google Scholar]
  23. Levitt N. S., Lindsay R. S., Holmes M. C., Seckl J. R. Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring in the rat. Neuroendocrinology. 1996 Dec;64(6):412–418. doi: 10.1159/000127146. [DOI] [PubMed] [Google Scholar]
  24. Lindsay R. S., Lindsay R. M., Waddell B. J., Seckl J. R. Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia. 1996 Nov;39(11):1299–1305. doi: 10.1007/s001250050573. [DOI] [PubMed] [Google Scholar]
  25. Lompré A. M., Lambert F., Lakatta E. G., Schwartz K. Expression of sarcoplasmic reticulum Ca(2+)-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res. 1991 Nov;69(5):1380–1388. doi: 10.1161/01.res.69.5.1380. [DOI] [PubMed] [Google Scholar]
  26. Mery L., Mesaeli N., Michalak M., Opas M., Lew D. P., Krause K. H. Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem. 1996 Apr 19;271(16):9332–9339. doi: 10.1074/jbc.271.16.9332. [DOI] [PubMed] [Google Scholar]
  27. Mesaeli N., Nakamura K., Zvaritch E., Dickie P., Dziak E., Krause K. H., Opas M., MacLennan D. H., Michalak M. Calreticulin is essential for cardiac development. J Cell Biol. 1999 Mar 8;144(5):857–868. doi: 10.1083/jcb.144.5.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Michalak M., Burns K., Andrin C., Mesaeli N., Jass G. H., Busaan J. L., Opas M. Endoplasmic reticulum form of calreticulin modulates glucocorticoid-sensitive gene expression. J Biol Chem. 1996 Nov 15;271(46):29436–29445. doi: 10.1074/jbc.271.46.29436. [DOI] [PubMed] [Google Scholar]
  29. Michalak M., Corbett E. F., Mesaeli N., Nakamura K., Opas M. Calreticulin: one protein, one gene, many functions. Biochem J. 1999 Dec 1;344(Pt 2):281–292. [PMC free article] [PubMed] [Google Scholar]
  30. Milner R. E., Baksh S., Shemanko C., Carpenter M. R., Smillie L., Vance J. E., Opas M., Michalak M. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem. 1991 Apr 15;266(11):7155–7165. [PubMed] [Google Scholar]
  31. Nakamura K., Robertson M., Liu G., Dickie P., Nakamura K., Guo J. Q., Duff H. J., Opas M., Kavanagh K., Michalak M. Complete heart block and sudden death in mice overexpressing calreticulin. J Clin Invest. 2001 May;107(10):1245–1253. doi: 10.1172/JCI12412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rauch F., Prud'homme J., Arabian A., Dedhar S., St-Arnaud R. Heart, brain, and body wall defects in mice lacking calreticulin. Exp Cell Res. 2000 Apr 10;256(1):105–111. doi: 10.1006/excr.2000.4818. [DOI] [PubMed] [Google Scholar]
  33. Rendón-Huerta E., Mendoza-Hernández G., Robles-Flores M. Characterization of calreticulin as a protein interacting with protein kinase C. Biochem J. 1999 Dec 1;344(Pt 2):469–475. [PMC free article] [PubMed] [Google Scholar]
  34. Sato Y., Ferguson D. G., Sako H., Dorn G. W., 2nd, Kadambi V. J., Yatani A., Hoit B. D., Walsh R. A., Kranias E. G. Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J Biol Chem. 1998 Oct 23;273(43):28470–28477. doi: 10.1074/jbc.273.43.28470. [DOI] [PubMed] [Google Scholar]
  35. Scott B. T., Simmerman H. K., Collins J. H., Nadal-Ginard B., Jones L. R. Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J Biol Chem. 1988 Jun 25;263(18):8958–8964. [PubMed] [Google Scholar]
  36. Seckl J. R. Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol. 2001 Dec 20;185(1-2):61–71. doi: 10.1016/s0303-7207(01)00633-5. [DOI] [PubMed] [Google Scholar]
  37. Sitsapesan R., Williams A. J. Regulation of current flow through ryanodine receptors by luminal Ca2+. J Membr Biol. 1997 Oct 1;159(3):179–185. doi: 10.1007/s002329900281. [DOI] [PubMed] [Google Scholar]
  38. Sugden M. C., Bulmer K., Augustine D., Holness M. J. Selective modification of pyruvate dehydrogenase kinase isoform expression in rat pancreatic islets elicited by starvation and activation of peroxisome proliferator-activated receptor-alpha: implications for glucose-stimulated insulin secretion. Diabetes. 2001 Dec;50(12):2729–2736. doi: 10.2337/diabetes.50.12.2729. [DOI] [PubMed] [Google Scholar]
  39. Tharin S., Hamel P. A., Conway E. M., Michalak M., Opas M. Regulation of calcium binding proteins calreticulin and calsequestrin during differentiation in the myogenic cell line L6. J Cell Physiol. 1996 Mar;166(3):547–560. doi: 10.1002/(SICI)1097-4652(199603)166:3<547::AID-JCP9>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  40. Wuytack F., Raeymaekers L., Verbist J., Jones L. R., Casteels R. Smooth-muscle endoplasmic reticulum contains a cardiac-like form of calsequestrin. Biochim Biophys Acta. 1987 May 29;899(2):151–158. doi: 10.1016/0005-2736(87)90395-6. [DOI] [PubMed] [Google Scholar]
  41. Yasue H., Yoshimura M., Sumida H., Kikuta K., Kugiyama K., Jougasaki M., Ogawa H., Okumura K., Mukoyama M., Nakao K. Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation. 1994 Jul;90(1):195–203. doi: 10.1161/01.cir.90.1.195. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES