Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):211–221. doi: 10.1042/BJ20021454

Converging signals synergistically activate the LAMC2 promoter and lead to accumulation of the laminin gamma 2 chain in human colon carcinoma cells.

Jørgen Olsen 1, Lene T Kirkeby 1, Marianne M Brorsson 1, Sally Dabelsteen 1, Jesper T Troelsen 1, Randi Bordoy 1, Kirsten Fenger 1, Lars-Inge Larsson 1, Patricia Simon-Assmann 1
PMCID: PMC1223269  PMID: 12519076

Abstract

The trimeric extracellular matrix molecule laminin-5 and its constituent chains (alpha 3, beta 3, gamma 2) are normally not detectable intracellularly in intestinal epithelial cells but the laminin gamma 2 chain can be detected in cancer cells at the invasive front of a subset of colon carcinomas. These cells are subjected to cytokines such as transforming growth factor beta 1 (TGF-beta 1) and hepatocyte growth factor (HGF), produced by the tumour cells or by the surrounding stromal cells. The purpose of the present work was to investigate whether TGF-beta 1 and HGF, known to stimulate the LAMC2 gene encoding the laminin gamma 2 chain, might synergize to activate the LAMC2 promoter, and to identify the promoter elements involved. We find evidence for synergy between TGF-beta and HGF with respect to laminin gamma 2 chain expression and promoter activation and demonstrate that this requires the 5' activator protein-1 (AP-1) element of the promoter and an additional upstream element which is also responsive to co-expression of the Smad3 protein from the TGF-beta signalling pathway. The transcripts encoding the other laminin-5 chains are not synergistically activated by HGF and TGF-beta. Thus the synergistic activation of the LAMC2 gene is mediated via different cis-elements and results in an overproduction of the laminin gamma 2 chain relative to the other laminin-5 constituent chains. This difference may explain why laminin gamma 2 chains accumulate in the cells at the invasive front of colon carcinomas.

Full Text

The Full Text of this article is available as a PDF (322.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bannister A. J., Kouzarides T. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J. 1995 Oct 2;14(19):4758–4762. doi: 10.1002/j.1460-2075.1995.tb00157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger J., Hauber J., Hauber R., Geiger R., Cullen B. R. Secreted placental alkaline phosphatase: a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene. 1988 Jun 15;66(1):1–10. doi: 10.1016/0378-1119(88)90219-3. [DOI] [PubMed] [Google Scholar]
  3. Birchmeier C., Meyer D., Riethmacher D. Factors controlling growth, motility, and morphogenesis of normal and malignant epithelial cells. Int Rev Cytol. 1995;160:221–266. doi: 10.1016/s0074-7696(08)61556-9. [DOI] [PubMed] [Google Scholar]
  4. Birchmeier W., Birchmeier C. Epithelial-mesenchymal transitions in development and tumor progression. EXS. 1995;74:1–15. doi: 10.1007/978-3-0348-9070-0_1. [DOI] [PubMed] [Google Scholar]
  5. Cirillo G., Casalino L., Vallone D., Caracciolo A., De Cesare D., Verde P. Role of distinct mitogen-activated protein kinase pathways and cooperation between Ets-2, ATF-2, and Jun family members in human urokinase-type plasminogen activator gene induction by interleukin-1 and tetradecanoyl phorbol acetate. Mol Cell Biol. 1999 Sep;19(9):6240–6252. doi: 10.1128/mcb.19.9.6240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dennler S., Itoh S., Vivien D., ten Dijke P., Huet S., Gauthier J. M. Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 1998 Jun 1;17(11):3091–3100. doi: 10.1093/emboj/17.11.3091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feng X. H., Zhang Y., Wu R. Y., Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 1998 Jul 15;12(14):2153–2163. doi: 10.1101/gad.12.14.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fynan T. M., Reiss M. Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev Oncog. 1993;4(5):493–540. [PubMed] [Google Scholar]
  9. Giannelli G., Antonaci S. Biological and clinical relevance of Laminin-5 in cancer. Clin Exp Metastasis. 2000;18(6):439–443. doi: 10.1023/a:1011879900554. [DOI] [PubMed] [Google Scholar]
  10. Giannelli G., Falk-Marzillier J., Schiraldi O., Stetler-Stevenson W. G., Quaranta V. Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997 Jul 11;277(5323):225–228. doi: 10.1126/science.277.5323.225. [DOI] [PubMed] [Google Scholar]
  11. Hlubek F., Jung A., Kotzor N., Kirchner T., Brabletz T. Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Res. 2001 Nov 15;61(22):8089–8093. [PubMed] [Google Scholar]
  12. Ilyas M., Tomlinson I. P., Rowan A., Pignatelli M., Bodmer W. F. Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10330–10334. doi: 10.1073/pnas.94.19.10330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ivaska J., Heino J. Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mol Life Sci. 2000 Jan 20;57(1):16–24. doi: 10.1007/s000180050496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janknecht R., Wells N. J., Hunter T. TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 1998 Jul 15;12(14):2114–2119. doi: 10.1101/gad.12.14.2114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnsen M., Lund L. R., Rømer J., Almholt K., Danø K. Cancer invasion and tissue remodeling: common themes in proteolytic matrix degradation. Curr Opin Cell Biol. 1998 Oct;10(5):667–671. doi: 10.1016/s0955-0674(98)80044-6. [DOI] [PubMed] [Google Scholar]
  16. Jung A., Schrauder M., Oswald U., Knoll C., Sellberg P., Palmqvist R., Niedobitek G., Brabletz T., Kirchner T. The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol. 2001 Nov;159(5):1613–1617. doi: 10.1016/s0002-9440(10)63007-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kikkawa Y., Umeda M., Miyazaki K. Marked stimulation of cell adhesion and motility by ladsin, a laminin-like scatter factor. J Biochem. 1994 Oct;116(4):862–869. doi: 10.1093/oxfordjournals.jbchem.a124608. [DOI] [PubMed] [Google Scholar]
  18. Kinzler K. W., Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996 Oct 18;87(2):159–170. doi: 10.1016/s0092-8674(00)81333-1. [DOI] [PubMed] [Google Scholar]
  19. Korang K., Christiano A. M., Uitto J., Mauviel A. Differential cytokine modulation of the genes LAMA3, LAMB3, and LAMC2, encoding the constitutive polypeptides, alpha 3, beta 3, and gamma 2, of human laminin 5 in epidermal keratinocytes. FEBS Lett. 1995 Jul 24;368(3):556–558. doi: 10.1016/0014-5793(95)00740-z. [DOI] [PubMed] [Google Scholar]
  20. Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784–1787. doi: 10.1126/science.275.5307.1784. [DOI] [PubMed] [Google Scholar]
  21. Koshikawa N., Giannelli G., Cirulli V., Miyazaki K., Quaranta V. Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 2000 Feb 7;148(3):615–624. doi: 10.1083/jcb.148.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Koshikawa N., Moriyama K., Takamura H., Mizushima H., Nagashima Y., Yanoma S., Miyazaki K. Overexpression of laminin gamma2 chain monomer in invading gastric carcinoma cells. Cancer Res. 1999 Nov 1;59(21):5596–5601. [PubMed] [Google Scholar]
  23. Kristensen P., Eriksen J., Blasi F., Danø K. Two alternatively spliced mouse urokinase receptor mRNAs with different histological localization in the gastrointestinal tract. J Cell Biol. 1991 Dec;115(6):1763–1771. doi: 10.1083/jcb.115.6.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Larsson L. I., Skriver L., Nielsen L. S., Grøndahl-Hansen J., Kristensen P., Danø K. Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. J Cell Biol. 1984 Mar;98(3):894–903. doi: 10.1083/jcb.98.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lee J. S., See R. H., Deng T., Shi Y. Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol Cell Biol. 1996 Aug;16(8):4312–4326. doi: 10.1128/mcb.16.8.4312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lesuffleur T., Barbat A., Dussaulx E., Zweibaum A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990 Oct 1;50(19):6334–6343. [PubMed] [Google Scholar]
  27. Lussier C., Basora N., Bouatrouss Y., Beaulieu J. F. Integrins as mediators of epithelial cell-matrix interactions in the human small intestinal mucosa. Microsc Res Tech. 2000 Oct 15;51(2):169–178. doi: 10.1002/1097-0029(20001015)51:2<169::AID-JEMT8>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  28. Massagué J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000 Dec;1(3):169–178. doi: 10.1038/35043051. [DOI] [PubMed] [Google Scholar]
  29. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–791. doi: 10.1146/annurev.biochem.67.1.753. [DOI] [PubMed] [Google Scholar]
  30. McKaig B. C., Makh S. S., Hawkey C. J., Podolsky D. K., Mahida Y. R. Normal human colonic subepithelial myofibroblasts enhance epithelial migration (restitution) via TGF-beta3. Am J Physiol. 1999 May;276(5 Pt 1):G1087–G1093. doi: 10.1152/ajpgi.1999.276.5.G1087. [DOI] [PubMed] [Google Scholar]
  31. Mizushima H., Miyagi Y., Kikkawa Y., Yamanaka N., Yasumitsu H., Misugi K., Miyazaki K. Differential expression of laminin-5/ladsin subunits in human tissues and cancer cell lines and their induction by tumor promoter and growth factors. J Biochem. 1996 Dec;120(6):1196–1202. doi: 10.1093/oxfordjournals.jbchem.a021541. [DOI] [PubMed] [Google Scholar]
  32. Morin P. J., Vogelstein B., Kinzler K. W. Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7950–7954. doi: 10.1073/pnas.93.15.7950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mulder K. M. Role of Ras and Mapks in TGFbeta signaling. Cytokine Growth Factor Rev. 2000 Mar-Jun;11(1-2):23–35. doi: 10.1016/s1359-6101(99)00026-x. [DOI] [PubMed] [Google Scholar]
  34. Ohtani H., Pyke C., Danø K., Nagura H. Expression of urokinase receptor in various stromal-cell populations in human colon cancer: immunoelectron microscopical analysis. Int J Cancer. 1995 Sep 15;62(6):691–696. doi: 10.1002/ijc.2910620608. [DOI] [PubMed] [Google Scholar]
  35. Olsen J., Laustsen L., Kärnström U., Sjöström H., Norén O. Tissue-specific interactions between nuclear proteins and the aminopeptidase N promoter. J Biol Chem. 1991 Sep 25;266(27):18089–18096. [PubMed] [Google Scholar]
  36. Olsen J., Lefebvre O., Fritsch C., Troelsen J. T., Orian-Rousseau V., Kedinger M., Simon-Assmann P. Involvement of activator protein 1 complexes in the epithelium-specific activation of the laminin gamma2-chain gene promoter by hepatocyte growth factor (scatter factor). Biochem J. 2000 Apr 15;347(Pt 2):407–417. doi: 10.1042/0264-6021:3470407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pelton R. W., Saxena B., Jones M., Moses H. L., Gold L. I. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991 Nov;115(4):1091–1105. doi: 10.1083/jcb.115.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pouponnot C., Jayaraman L., Massagué J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem. 1998 Sep 4;273(36):22865–22868. doi: 10.1074/jbc.273.36.22865. [DOI] [PubMed] [Google Scholar]
  39. Pyke C., Rømer J., Kallunki P., Lund L. R., Ralfkiaer E., Danø K., Tryggvason K. The gamma 2 chain of kalinin/laminin 5 is preferentially expressed in invading malignant cells in human cancers. Am J Pathol. 1994 Oct;145(4):782–791. [PMC free article] [PubMed] [Google Scholar]
  40. Pyke C., Salo S., Ralfkiaer E., Rømer J., Danø K., Tryggvason K. Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res. 1995 Sep 15;55(18):4132–4139. [PubMed] [Google Scholar]
  41. Riggins G. J., Kinzler K. W., Vogelstein B., Thiagalingam S. Frequency of Smad gene mutations in human cancers. Cancer Res. 1997 Jul 1;57(13):2578–2580. [PubMed] [Google Scholar]
  42. Simon-Assmann P., Kedinger M., De Arcangelis A., Rousseau V., Simo P. Extracellular matrix components in intestinal development. Experientia. 1995 Sep 29;51(9-10):883–900. doi: 10.1007/BF01921739. [DOI] [PubMed] [Google Scholar]
  43. Simon-Assmann P., Lefebvre O., Bellissent-Waydelich A., Olsen J., Orian-Rousseau V., De Arcangelis A. The laminins: role in intestinal morphogenesis and differentiation. Ann N Y Acad Sci. 1998 Nov 17;859:46–64. doi: 10.1111/j.1749-6632.1998.tb11110.x. [DOI] [PubMed] [Google Scholar]
  44. Sonnenberg E., Meyer D., Weidner K. M., Birchmeier C. Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 1993 Oct;123(1):223–235. doi: 10.1083/jcb.123.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sordat I., Bosman F. T., Dorta G., Rousselle P., Aberdam D., Blum A. L., Sordat B. Differential expression of laminin-5 subunits and integrin receptors in human colorectal neoplasia. J Pathol. 1998 May;185(1):44–52. doi: 10.1002/(SICI)1096-9896(199805)185:1<44::AID-PATH46>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  46. Stutzmann J., Bellissent-Waydelich A., Fontao L., Launay J. F., Simon-Assmann P. Adhesion complexes implicated in intestinal epithelial cell-matrix interactions. Microsc Res Tech. 2000 Oct 15;51(2):179–190. doi: 10.1002/1097-0029(20001015)51:2<179::AID-JEMT9>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  47. Zawel L., Dai J. L., Buckhaults P., Zhou S., Kinzler K. W., Vogelstein B., Kern S. E. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998 Mar;1(4):611–617. doi: 10.1016/s1097-2765(00)80061-1. [DOI] [PubMed] [Google Scholar]
  48. Zhang Y., Feng X. H., Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-beta-induced transcription. Nature. 1998 Aug 27;394(6696):909–913. doi: 10.1038/29814. [DOI] [PubMed] [Google Scholar]
  49. Zhou S., Buckhaults P., Zawel L., Bunz F., Riggins G., Dai J. L., Kern S. E., Kinzler K. W., Vogelstein B. Targeted deletion of Smad4 shows it is required for transforming growth factor beta and activin signaling in colorectal cancer cells. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2412–2416. doi: 10.1073/pnas.95.5.2412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. ten Dijke P., Miyazono K., Heldin C. H. Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci. 2000 Feb;25(2):64–70. doi: 10.1016/s0968-0004(99)01519-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES