Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):151–164. doi: 10.1042/BJ20021525

1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide.

Shasi V Kalivendi 1, Srigiridhar Kotamraju 1, Sonya Cunningham 1, Tiesong Shang 1, Cecilia J Hillard 1, B Kalyanaraman 1
PMCID: PMC1223270  PMID: 12523938

Abstract

1-Methyl-4-phenylpyridinium (MPP(+)) is a neurotoxin used in cellular models of Parkinson's Disease. Although intracellular iron plays a crucial role in MPP(+)-induced apoptosis, the molecular signalling mechanisms linking iron, reactive oxygen species (ROS) and apoptosis are still unknown. We investigated these aspects using cerebellar granule neurons (CGNs) and human SH-SY5Y neuroblastoma cells. MPP(+) enhanced caspase 3 activity after 24 h with significant increases as early as 12 h after treatment of cells. Pre-treatment of CGNs and neuroblastoma cells with the metalloporphyrin antioxidant enzyme mimic, Fe(III)tetrakis(4-benzoic acid)porphyrin (FeTBAP), completely prevented the MPP(+)-induced caspase 3 activity as did overexpression of glutathione peroxidase (GPx1) and pre-treatment with a lipophilic, cell-permeable iron chelator [N, N '-bis-(2-hydroxybenzyl)ethylenediamine-N, N '-diacetic acid, HBED]. MPP(+) treatment increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labelling)-positive cells which was completely blocked by pre-treatment with FeTBAP. MPP(+) treatment significantly decreased the aconitase and mitochondrial complex I activities; pre-treatment with FeTBAP, HBED and GPx1 overexpression reversed this effect. MPP(+) treatment increased the intracellular oxidative stress by 2-3-fold, as determined by oxidation of dichlorodihydrofluorescein and dihydroethidium (hydroethidine). These effects were reversed by pre-treatment of cells with FeTBAP and HBED and by GPx1 overexpression. MPP(+)-treatment enhanced the cell-surface transferrin receptor (TfR) expression, suggesting a role for TfR-induced iron uptake in MPP(+) toxicity. Treatment of cells with anti-TfR antibody (IgA class) inhibited MPP(+)-induced caspase activation. Inhibition of nitric oxide synthase activity did not affect caspase 3 activity, apoptotic cell death or ROS generation by MPP(+). Overall, these results suggest that MPP(+)-induced cell death in CGNs and neuroblastoma cells proceeds via apoptosis and involves mitochondrial release of ROS and TfR-dependent iron.

Full Text

The Full Text of this article is available as a PDF (540.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. D., Jr, Klaidman L. K., Leung A. C. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Radic Biol Med. 1993 Aug;15(2):181–186. doi: 10.1016/0891-5849(93)90057-2. [DOI] [PubMed] [Google Scholar]
  2. Akaneya Y., Takahashi M., Hatanaka H. Involvement of free radicals in MPP+ neurotoxicity against rat dopaminergic neurons in culture. Neurosci Lett. 1995 Jun 23;193(1):53–56. doi: 10.1016/0304-3940(95)11668-m. [DOI] [PubMed] [Google Scholar]
  3. Bates T. E., Heales S. J., Davies S. E., Boakye P., Clark J. B. Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion. J Neurochem. 1994 Aug;63(2):640–648. doi: 10.1046/j.1471-4159.1994.63020640.x. [DOI] [PubMed] [Google Scholar]
  4. Burns R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., Kopin I. J. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4546–4550. doi: 10.1073/pnas.80.14.4546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cassarino D. S., Fall C. P., Swerdlow R. H., Smith T. S., Halvorsen E. M., Miller S. W., Parks J. P., Parker W. D., Jr, Bennett J. P., Jr Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta. 1997 Nov 28;1362(1):77–86. doi: 10.1016/s0925-4439(97)00070-7. [DOI] [PubMed] [Google Scholar]
  6. Chiba K., Trevor A., Castagnoli N., Jr Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun. 1984 Apr 30;120(2):574–578. doi: 10.1016/0006-291x(84)91293-2. [DOI] [PubMed] [Google Scholar]
  7. Cleeter M. W., Cooper J. M., Schapira A. H. Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem. 1992 Feb;58(2):786–789. doi: 10.1111/j.1471-4159.1992.tb09789.x. [DOI] [PubMed] [Google Scholar]
  8. Dawson V. L., Kizushi V. M., Huang P. L., Snyder S. H., Dawson T. M. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. J Neurosci. 1996 Apr 15;16(8):2479–2487. doi: 10.1523/JNEUROSCI.16-08-02479.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Day B. J., Shawen S., Liochev S. I., Crapo J. D. A metalloporphyrin superoxide dismutase mimetic protects against paraquat-induced endothelial cell injury, in vitro. J Pharmacol Exp Ther. 1995 Dec;275(3):1227–1232. [PubMed] [Google Scholar]
  10. Dipasquale B., Marini A. M., Youle R. J. Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1442–1448. doi: 10.1016/0006-291x(91)92101-o. [DOI] [PubMed] [Google Scholar]
  11. Fall C. P., Bennett J. P., Jr Characterization and time course of MPP+ -induced apoptosis in human SH-SY5Y neuroblastoma cells. J Neurosci Res. 1999 Mar 1;55(5):620–628. doi: 10.1002/(SICI)1097-4547(19990301)55:5<620::AID-JNR9>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  12. Fujiwara Hideo, Hasegawa Masato, Dohmae Naoshi, Kawashima Akiko, Masliah Eliezer, Goldberg Matthew S., Shen Jie, Takio Koji, Iwatsubo Takeshi. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002 Feb;4(2):160–164. doi: 10.1038/ncb748. [DOI] [PubMed] [Google Scholar]
  13. Gardner P. R., Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem. 1991 Oct 15;266(29):19328–19333. [PubMed] [Google Scholar]
  14. Hallman H., Olson L., Jonsson G. Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons in the mouse. Eur J Pharmacol. 1984 Jan 13;97(1-2):133–136. doi: 10.1016/0014-2999(84)90521-1. [DOI] [PubMed] [Google Scholar]
  15. Hashimoto M., Hsu L. J., Xia Y., Takeda A., Sisk A., Sundsmo M., Masliah E. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro. Neuroreport. 1999 Mar 17;10(4):717–721. doi: 10.1097/00001756-199903170-00011. [DOI] [PubMed] [Google Scholar]
  16. Hausladen A., Fridovich I. Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem. 1994 Nov 25;269(47):29405–29408. [PubMed] [Google Scholar]
  17. Hillard C. J., Edgemond W. S., Jarrahian A., Campbell W. B. Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J Neurochem. 1997 Aug;69(2):631–638. doi: 10.1046/j.1471-4159.1997.69020631.x. [DOI] [PubMed] [Google Scholar]
  18. Ilic T. V., Jovanovic M., Jovicic A., Tomovic M. Oxidative stress indicators are elevated in de novo Parkinson's disease patients. Funct Neurol. 1999 Jul-Sep;14(3):141–147. [PubMed] [Google Scholar]
  19. Kakimura J., Kitamura Y., Takata K., Kohno Y., Nomura Y., Taniguchi T. Release and aggregation of cytochrome c and alpha-synuclein are inhibited by the antiparkinsonian drugs, talipexole and pramipexole. Eur J Pharmacol. 2001 Apr 6;417(1-2):59–67. doi: 10.1016/s0014-2999(01)00902-5. [DOI] [PubMed] [Google Scholar]
  20. Kalivendi S. V., Kotamraju S., Zhao H., Joseph J., Kalyanaraman B. Doxorubicin-induced apoptosis is associated with increased transcription of endothelial nitric-oxide synthase. Effect of antiapoptotic antioxidants and calcium. J Biol Chem. 2001 Sep 28;276(50):47266–47276. doi: 10.1074/jbc.M106829200. [DOI] [PubMed] [Google Scholar]
  21. Kennedy M. C., Emptage M. H., Dreyer J. L., Beinert H. The role of iron in the activation-inactivation of aconitase. J Biol Chem. 1983 Sep 25;258(18):11098–11105. [PubMed] [Google Scholar]
  22. Kim H. Y., LaVaute T., Iwai K., Klausner R. D., Rouault T. A. Identification of a conserved and functional iron-responsive element in the 5'-untranslated region of mammalian mitochondrial aconitase. J Biol Chem. 1996 Sep 27;271(39):24226–24230. doi: 10.1074/jbc.271.39.24226. [DOI] [PubMed] [Google Scholar]
  23. Konorev Eugene A., Kotamraju Srigiridhar, Zhao Hongtao, Kalivendi Shasi, Joseph Joy, Kalyanaraman B. Paradoxical effects of metalloporphyrins on doxorubicin-induced apoptosis: scavenging of reactive oxygen species versus induction of heme oxygenase-1. Free Radic Biol Med. 2002 Oct 1;33(7):988–988. doi: 10.1016/s0891-5849(02)00989-9. [DOI] [PubMed] [Google Scholar]
  24. Kotamraju Srigiridhar, Chitambar Christopher R., Kalivendi Shasi V., Joseph Joy, Kalyanaraman B. Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis. J Biol Chem. 2002 Feb 20;277(19):17179–17187. doi: 10.1074/jbc.M111604200. [DOI] [PubMed] [Google Scholar]
  25. Lai M., Griffiths H., Pall H., Williams A., Lunec J. An investigation into the role of reactive oxygen species in the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity using neuronal cell lines. Biochem Pharmacol. 1993 Feb 24;45(4):927–933. doi: 10.1016/0006-2952(93)90178-y. [DOI] [PubMed] [Google Scholar]
  26. Lan J., Jiang D. H. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transm (Vienna) 1997;104(4-5):469–481. doi: 10.1007/BF01277665. [DOI] [PubMed] [Google Scholar]
  27. Langston J. W., Ballard P., Tetrud J. W., Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983 Feb 25;219(4587):979–980. doi: 10.1126/science.6823561. [DOI] [PubMed] [Google Scholar]
  28. LeBel C. P., Ischiropoulos H., Bondy S. C. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992 Mar-Apr;5(2):227–231. doi: 10.1021/tx00026a012. [DOI] [PubMed] [Google Scholar]
  29. Li Q., Sanlioglu S., Li S., Ritchie T., Oberley L., Engelhardt J. F. GPx-1 gene delivery modulates NFkappaB activation following diverse environmental injuries through a specific subunit of the IKK complex. Antioxid Redox Signal. 2001 Jun;3(3):415–432. doi: 10.1089/15230860152409068. [DOI] [PubMed] [Google Scholar]
  30. Lotharius J., O'Malley K. L. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem. 2000 Dec 8;275(49):38581–38588. doi: 10.1074/jbc.M005385200. [DOI] [PubMed] [Google Scholar]
  31. Marini A. M., Schwartz J. P., Kopin I. J. The neurotoxicity of 1-methyl-4-phenylpyridinium in cultured cerebellar granule cells. J Neurosci. 1989 Oct;9(10):3665–3672. doi: 10.1523/JNEUROSCI.09-10-03665.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Matthews R. T., Beal M. F., Fallon J., Fedorchak K., Huang P. L., Fishman M. C., Hyman B. T. MPP+ induced substantia nigra degeneration is attenuated in nNOS knockout mice. Neurobiol Dis. 1997;4(2):114–121. doi: 10.1006/nbdi.1997.0141. [DOI] [PubMed] [Google Scholar]
  33. Nakamura K., Bindokas V. P., Marks J. D., Wright D. A., Frim D. M., Miller R. J., Kang U. J. The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited. Mol Pharmacol. 2000 Aug;58(2):271–278. doi: 10.1124/mol.58.2.271. [DOI] [PubMed] [Google Scholar]
  34. Nicklas W. J., Vyas I., Heikkila R. E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 1985 Jul 1;36(26):2503–2508. doi: 10.1016/0024-3205(85)90146-8. [DOI] [PubMed] [Google Scholar]
  35. Ohashi Tomoko, Mizutani Atsushi, Murakami Akira, Kojo Shosuke, Ishii Tetsuro, Taketani Shigeru. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002 Jan 30;511(1-3):21–27. doi: 10.1016/s0014-5793(01)03262-8. [DOI] [PubMed] [Google Scholar]
  36. Paglia D. E., Valentine W. N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967 Jul;70(1):158–169. [PubMed] [Google Scholar]
  37. Przedborski S., Kostic V., Jackson-Lewis V., Naini A. B., Simonetti S., Fahn S., Carlson E., Epstein C. J., Cadet J. L. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity. J Neurosci. 1992 May;12(5):1658–1667. doi: 10.1523/JNEUROSCI.12-05-01658.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Samuni A. M., Afeworki M., Stein W., Yordanov A. T., DeGraff W., Krishna M. C., Mitchell J. B., Brechbiel M. W. Multifunctional antioxidant activity of HBED iron chelator. Free Radic Biol Med. 2001 Jan 15;30(2):170–177. doi: 10.1016/s0891-5849(00)00459-7. [DOI] [PubMed] [Google Scholar]
  39. Santiago M., Matarredona E. R., Granero L., Cano J., Machado A. Neuroprotective effect of the iron chelator desferrioxamine against MPP+ toxicity on striatal dopaminergic terminals. J Neurochem. 1997 Feb;68(2):732–738. doi: 10.1046/j.1471-4159.1997.68020732.x. [DOI] [PubMed] [Google Scholar]
  40. Saybaşili H., Yüksel M., Haklar G., Yalçin A. S. Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid Redox Signal. 2001 Dec;3(6):1099–1104. doi: 10.1089/152308601317203602. [DOI] [PubMed] [Google Scholar]
  41. Schueck N. D., Woontner M., Koeller D. M. The role of the mitochondrion in cellular iron homeostasis. Mitochondrion. 2001 Jun;1(1):51–60. doi: 10.1016/s1567-7249(01)00004-6. [DOI] [PubMed] [Google Scholar]
  42. Seyfried J., Soldner F., Kunz W. S., Schulz J. B., Klockgether T., Kovar K. A., Wüllner U. Effect of 1-methyl-4-phenylpyridinium on glutathione in rat pheochromocytoma PC 12 cells. Neurochem Int. 2000 May;36(6):489–497. doi: 10.1016/s0197-0186(99)00156-4. [DOI] [PubMed] [Google Scholar]
  43. Soldner F., Weller M., Haid S., Beinroth S., Miller S. W., Wüllner U., Davis R. E., Dichgans J., Klockgether T., Schulz J. B. MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1). Exp Cell Res. 1999 Jul 10;250(1):75–85. doi: 10.1006/excr.1999.4504. [DOI] [PubMed] [Google Scholar]
  44. Taetle R., Castagnola J., Mendelsohn J. Mechanisms of growth inhibition by anti-transferrin receptor monoclonal antibodies. Cancer Res. 1986 Apr;46(4 Pt 1):1759–1763. [PubMed] [Google Scholar]
  45. Vásquez-Vivar J., Hogg N., Pritchard K. A., Jr, Martasek P., Kalyanaraman B. Superoxide anion formation from lucigenin: an electron spin resonance spin-trapping study. FEBS Lett. 1997 Feb 17;403(2):127–130. doi: 10.1016/s0014-5793(97)00036-7. [DOI] [PubMed] [Google Scholar]
  46. Weisiger R. A., Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973 May 25;248(10):3582–3592. [PubMed] [Google Scholar]
  47. Yen H. C., Oberley T. D., Gairola C. G., Szweda L. I., St Clair D. K. Manganese superoxide dismutase protects mitochondrial complex I against adriamycin-induced cardiomyopathy in transgenic mice. Arch Biochem Biophys. 1999 Feb 1;362(1):59–66. doi: 10.1006/abbi.1998.1011. [DOI] [PubMed] [Google Scholar]
  48. Youdim M. B., Ben-Shachar D., Riederer P. The possible role of iron in the etiopathology of Parkinson's disease. Mov Disord. 1993;8(1):1–12. doi: 10.1002/mds.870080102. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES