Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 1;371(Pt 1):97–108. doi: 10.1042/BJ20021123

Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization.

Krestine Greve 1, Tanja La Cour 1, Michael K Jensen 1, Flemming M Poulsen 1, Karen Skriver 1
PMCID: PMC1223272  PMID: 12646039

Abstract

Numerous, highly conserved RING-H2 domains are found in the model plant Arabidopsis thaliana (thale cress). To characterize potential RING-H2 protein interactions, the small RING-H2 protein RHA2a was used as bait in a yeast two-hybrid screen. RHA2a interacted with one of the plant-specific NAC [NAM ('no apical meristem'), ATAF1/2, CUC2 ('cup-shaped cotyledons 2')] transcription factors, here named ANAC (abscisic acid-responsive NAC). The core RING-H2 domain was sufficient for the interaction. The ability of 11 structurally diverse RING-H2 domains to interact with ANAC was then examined. Robust interaction was detected for three of the domains, suggesting multi-specificity for the interaction. The domains that interacted with ANAC contain a glutamic acid residue in a position corresponding to a proline in many RING-H2 domains. Conversion of this glutamic acid residue into proline in RHA2a decreased its ability to interact with ANAC, most likely by changing the interaction surface. This suggested that a short, divergent region in RING-H2 domains modulate interaction specificity. ANAC contains a degenerate bipartite nuclear localization signal (NLS), while RHG1a, also identified as an ANAC interaction partner, contains a basic NLS. Both signals localized beta-glucuronidase reporter fusions to the nucleus. N-terminally truncated RHA2a also directed nuclear localization, apparently dependent on basic amino acids in the RING-H2 domain. Nuclear co-localization of the RING-H2 proteins and ANAC may enable their interaction in vivo to regulate the activity of the ANAC transcription factor.

Full Text

The Full Text of this article is available as a PDF (704.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aida M., Ishida T., Fukaki H., Fujisawa H., Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell. 1997 Jun;9(6):841–857. doi: 10.1105/tpc.9.6.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aravind L., Koonin E. V. The U box is a modified RING finger - a common domain in ubiquitination. Curr Biol. 2000 Feb 24;10(4):R132–R134. doi: 10.1016/s0960-9822(00)00398-5. [DOI] [PubMed] [Google Scholar]
  4. Barlow P. N., Luisi B., Milner A., Elliott M., Everett R. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J Mol Biol. 1994 Mar 25;237(2):201–211. doi: 10.1006/jmbi.1994.1222. [DOI] [PubMed] [Google Scholar]
  5. Berg J. M., Godwin H. A. Lessons from zinc-binding peptides. Annu Rev Biophys Biomol Struct. 1997;26:357–371. doi: 10.1146/annurev.biophys.26.1.357. [DOI] [PubMed] [Google Scholar]
  6. Borden K. L. RING domains: master builders of molecular scaffolds? J Mol Biol. 2000 Feb 4;295(5):1103–1112. doi: 10.1006/jmbi.1999.3429. [DOI] [PubMed] [Google Scholar]
  7. Bujnicki J. M., Elofsson A., Fischer D., Rychlewski L. Structure prediction meta server. Bioinformatics. 2001 Aug;17(8):750–751. doi: 10.1093/bioinformatics/17.8.750. [DOI] [PubMed] [Google Scholar]
  8. Capili A. D., Schultz D. C., RauscherIII F. J., Borden K. L. Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J. 2001 Jan 15;20(1-2):165–177. doi: 10.1093/emboj/20.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collinge M., Boller T. Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol. 2001 Jul;46(5):521–529. doi: 10.1023/a:1010639225091. [DOI] [PubMed] [Google Scholar]
  10. Freemont P. S., Hanson I. M., Trowsdale J. A novel cysteine-rich sequence motif. Cell. 1991 Feb 8;64(3):483–484. doi: 10.1016/0092-8674(91)90229-r. [DOI] [PubMed] [Google Scholar]
  11. Freemont P. S. RING for destruction? Curr Biol. 2000 Jan 27;10(2):R84–R87. doi: 10.1016/s0960-9822(00)00287-6. [DOI] [PubMed] [Google Scholar]
  12. Gervais V., Busso D., Wasielewski E., Poterszman A., Egly J. M., Thierry J. C., Kieffer B. Solution structure of the N-terminal domain of the human TFIIH MAT1 subunit: new insights into the RING finger family. J Biol Chem. 2000 Oct 30;276(10):7457–7464. doi: 10.1074/jbc.M007963200. [DOI] [PubMed] [Google Scholar]
  13. Gray William M., Hellmann Hanjo, Dharmasiri Sunethra, Estelle Mark. Role of the Arabidopsis RING-H2 protein RBX1 in RUB modification and SCF function. Plant Cell. 2002 Sep;14(9):2137–2144. doi: 10.1105/tpc.003178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harbers M., Nomura T., Ohno S., Ishii S. Intracellular localization of the Ret finger protein depends on a functional nuclear export signal and protein kinase C activation. J Biol Chem. 2001 Oct 8;276(51):48596–48607. doi: 10.1074/jbc.M108077200. [DOI] [PubMed] [Google Scholar]
  15. Hardtke Christian S., Okamoto Haruko, Stoop-Myer Chatanika, Deng Xing Wang. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J. 2002 May;30(4):385–394. doi: 10.1046/j.1365-313x.2002.01298.x. [DOI] [PubMed] [Google Scholar]
  16. Houvras Y., Benezra M., Zhang H., Manfredi J. J., Weber B. L., Licht J. D. BRCA1 physically and functionally interacts with ATF1. J Biol Chem. 2000 Nov 17;275(46):36230–36237. doi: 10.1074/jbc.M002539200. [DOI] [PubMed] [Google Scholar]
  17. Hunt J. B., Neece S. H., Schachman H. K., Ginsburg A. Mercurial-promoted Zn2+ release from Escherichia coli aspartate transcarbamoylase. J Biol Chem. 1984 Dec 10;259(23):14793–14803. [PubMed] [Google Scholar]
  18. Jackson P. K., Eldridge A. G., Freed E., Furstenthal L., Hsu J. Y., Kaiser B. K., Reimann J. D. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 2000 Oct;10(10):429–439. doi: 10.1016/s0962-8924(00)01834-1. [DOI] [PubMed] [Google Scholar]
  19. Jensen R. B., Jensen K. L., Jespersen H. M., Skriver K. Widespread occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett. 1998 Oct 2;436(2):283–287. doi: 10.1016/s0014-5793(98)01143-0. [DOI] [PubMed] [Google Scholar]
  20. Kentsis A., Borden K. L. Construction of macromolecular assemblages in eukaryotic processes and their role in human disease: linking RINGs together. Curr Protein Pept Sci. 2000 Jul;1(1):49–73. doi: 10.2174/1389203003381478. [DOI] [PubMed] [Google Scholar]
  21. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  22. Lechner Esther, Goloubinoff Pierre, Genschik Pascal, Shen Wen Hui. A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of the gene in Arabidopsis. Gene. 2002 May 15;290(1-2):63–71. doi: 10.1016/s0378-1119(02)00556-5. [DOI] [PubMed] [Google Scholar]
  23. Letunic Ivica, Goodstadt Leo, Dickens Nicholas J., Doerks Tobias, Schultz Joerg, Mott Richard, Ciccarelli Francesca, Copley Richard R., Ponting Chris P., Bork Peer. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res. 2002 Jan 1;30(1):242–244. doi: 10.1093/nar/30.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Li B., Fields S. Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. 1993 Jul;7(10):957–963. doi: 10.1096/fasebj.7.10.8344494. [DOI] [PubMed] [Google Scholar]
  25. Matsuda N., Suzuki T., Tanaka K., Nakano A. Rma1, a novel type of RING finger protein conserved from Arabidopsis to human, is a membrane-bound ubiquitin ligase. J Cell Sci. 2001 May;114(Pt 10):1949–1957. doi: 10.1242/jcs.114.10.1949. [DOI] [PubMed] [Google Scholar]
  26. Molnár Gergely, Bancoş Simona, Nagy Ferenc, Szekeres Miklós. Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta. 2002 Jan 25;215(1):127–133. doi: 10.1007/s00425-001-0723-z. [DOI] [PubMed] [Google Scholar]
  27. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Osterlund M. T., Hardtke C. S., Wei N., Deng X. W. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000 May 25;405(6785):462–466. doi: 10.1038/35013076. [DOI] [PubMed] [Google Scholar]
  29. Perander M., Bjorkoy G., Johansen T. Nuclear import and export signals enable rapid nucleocytoplasmic shuttling of the atypical protein kinase C lambda. J Biol Chem. 2000 Dec 13;276(16):13015–13024. doi: 10.1074/jbc.M010356200. [DOI] [PubMed] [Google Scholar]
  30. Petersen M., Brodersen P., Naested H., Andreasson E., Lindhart U., Johansen B., Nielsen H. B., Lacy M., Austin M. J., Parker J. E. Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell. 2000 Dec 22;103(7):1111–1120. doi: 10.1016/s0092-8674(00)00213-0. [DOI] [PubMed] [Google Scholar]
  31. Potuschak T., Stary S., Schlögelhofer P., Becker F., Nejinskaia V., Bachmair A. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7904–7908. doi: 10.1073/pnas.95.14.7904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rodríguez J. A., Henderson B. R. Identification of a functional nuclear export sequence in BRCA1. J Biol Chem. 2000 Dec 8;275(49):38589–38596. doi: 10.1074/jbc.M003851200. [DOI] [PubMed] [Google Scholar]
  33. Roth J., Dobbelstein M., Freedman D. A., Shenk T., Levine A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 1998 Jan 15;17(2):554–564. doi: 10.1093/emboj/17.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salinas-Mondragón R. E., Garcidueñas-Piña C., Guzmán P. Early elicitor induction in members of a novel multigene family coding for highly related RING-H2 proteins in Arabidopsis thaliana. Plant Mol Biol. 1999 Jul;40(4):579–590. doi: 10.1023/a:1006267201855. [DOI] [PubMed] [Google Scholar]
  35. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Souer E., van Houwelingen A., Kloos D., Mol J., Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996 Apr 19;85(2):159–170. doi: 10.1016/s0092-8674(00)81093-4. [DOI] [PubMed] [Google Scholar]
  37. Takai Ryota, Matsuda Noriyuki, Nakano Akihiko, Hasegawa Koji, Akimoto Chiharu, Shibuya Naoto, Minami Eiichi. EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. Plant J. 2002 May;30(4):447–455. doi: 10.1046/j.1365-313x.2002.01299.x. [DOI] [PubMed] [Google Scholar]
  38. Varagona M. J., Schmidt R. J., Raikhel N. V. Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell. 1992 Oct;4(10):1213–1227. doi: 10.1105/tpc.4.10.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wu S. H., Chen C. J., Tseng M. J., Wang K. T. The modification of alpha-bungarotoxin by digestion with trypsin. Arch Biochem Biophys. 1983 Nov;227(1):111–117. doi: 10.1016/0003-9861(83)90353-3. [DOI] [PubMed] [Google Scholar]
  40. Xie Q., Frugis G., Colgan D., Chua N. H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 2000 Dec 1;14(23):3024–3036. doi: 10.1101/gad.852200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xie Q., Sanz-Burgos A. P., Guo H., García J. A., Gutiérrez C. GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol. 1999 Mar;39(4):647–656. doi: 10.1023/a:1006138221874. [DOI] [PubMed] [Google Scholar]
  42. Xie Qi, Guo Hui-Shan, Dallman Geza, Fang Shengyun, Weissman Allan M., Chua Nam-Hai. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature. 2002 Sep 12;419(6903):167–170. doi: 10.1038/nature00998. [DOI] [PubMed] [Google Scholar]
  43. Zheng N., Wang P., Jeffrey P. D., Pavletich N. P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell. 2000 Aug 18;102(4):533–539. doi: 10.1016/s0092-8674(00)00057-x. [DOI] [PubMed] [Google Scholar]
  44. Zheng Ning, Schulman Brenda A., Song Langzhou, Miller Julie J., Jeffrey Philip D., Wang Ping, Chu Claire, Koepp Deanna M., Elledge Stephen J., Pagano Michele. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002 Apr 18;416(6882):703–709. doi: 10.1038/416703a. [DOI] [PubMed] [Google Scholar]
  45. la Cour Tanja, Gupta Ramneek, Rapacki Kristoffer, Skriver Karen, Poulsen Flemming M., Brunak Søren. NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res. 2003 Jan 1;31(1):393–396. doi: 10.1093/nar/gkg101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. van der Krol A. R., Chua N. H. The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell. 1991 Jul;3(7):667–675. doi: 10.1105/tpc.3.7.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. von Arnim A. G., Deng X. W. Light inactivation of Arabidopsis photomorphogenic repressor COP1 involves a cell-specific regulation of its nucleocytoplasmic partitioning. Cell. 1994 Dec 16;79(6):1035–1045. doi: 10.1016/0092-8674(94)90034-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES