Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):505–513. doi: 10.1042/BJ20021685

Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C.

Hubertus Haas 1, Michelle Schoeser 1, Emmanuel Lesuisse 1, Joachim F Ernst 1, Walther Parson 1, Beate Abt 1, Günther Winkelmann 1, Harald Oberegger 1
PMCID: PMC1223275  PMID: 12487628

Abstract

The filamentous ascomycete Aspergillus nidulans produces three major siderophores: fusigen, triacetylfusarinine C, and ferricrocin. Biosynthesis and uptake of iron from these siderophores, as well as from various heterologous siderophores, is repressed by iron and this regulation is mediated in part by the transcriptional repressor SREA. Recently we have characterized a putative siderophore-transporter-encoding gene ( mirA ). Here we present the characterization of two further SREA- and iron-regulated paralogues (mirB and mirC ), including the chromosomal localization and the complete exon/intron structure. Expression of mirA and mirB in a Saccharomyces cerevisiae strain, which lacks high affinity iron transport systems, showed that MIRA transports specifically the heterologous siderophore enterobactin and that MIRB transports exclusively the native siderophore triacetylfusarinine C. Construction and analysis of an A. nidulans mirA deletion mutant confirmed the substrate specificity of MIRA. Phylogenetic analysis of the available sequences suggests that the split of the species A. nidulans and S. cerevisiae predates the divergence of the paralogous Aspergillus siderophore transporters.

Full Text

The Full Text of this article is available as a PDF (300.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An Z., Mei B., Yuan W. M., Leong S. A. The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J. 1997 Apr 1;16(7):1742–1750. doi: 10.1093/emboj/16.7.1742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ardon O., Bussey H., Philpott C., Ward D. M., Davis-Kaplan S., Verroneau S., Jiang B., Kaplan J. Identification of a Candida albicans ferrichrome transporter and its characterization by expression in Saccharomyces cerevisiae. J Biol Chem. 2001 Sep 18;276(46):43049–43055. doi: 10.1074/jbc.M108701200. [DOI] [PubMed] [Google Scholar]
  3. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  4. Bagg A., Neilands J. B. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev. 1987 Dec;51(4):509–518. doi: 10.1128/mr.51.4.509-518.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ballance D. J. Sequences important for gene expression in filamentous fungi. Yeast. 1986 Dec;2(4):229–236. doi: 10.1002/yea.320020404. [DOI] [PubMed] [Google Scholar]
  6. Blaiseau P. L., Lesuisse E., Camadro J. M. Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast. J Biol Chem. 2001 Jul 11;276(36):34221–34226. doi: 10.1074/jbc.M104987200. [DOI] [PubMed] [Google Scholar]
  7. Brakhage A. A., Turner G. L-lysine repression of penicillin biosynthesis and the expression of penicillin biosynthesis genes acvA and ipnA in Aspergillus nidulans. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):123–127. doi: 10.1016/0378-1097(92)90142-b. [DOI] [PubMed] [Google Scholar]
  8. Brody H., Griffith J., Cuticchia A. J., Arnold J., Timberlake W. E. Chromosome-specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids Res. 1991 Jun 11;19(11):3105–3109. doi: 10.1093/nar/19.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brookman J. L., Denning D. W. Molecular genetics in Aspergillus fumigatus. Curr Opin Microbiol. 2000 Oct;3(5):468–474. doi: 10.1016/s1369-5274(00)00124-7. [DOI] [PubMed] [Google Scholar]
  10. Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Luca N. G., Wood P. M. Iron uptake by fungi: contrasted mechanisms with internal or external reduction. Adv Microb Physiol. 2000;43:39–74. doi: 10.1016/s0065-2911(00)43002-x. [DOI] [PubMed] [Google Scholar]
  12. Eck R., Hundt S., Härtl A., Roemer E., Künkel W. A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology. 1999 Sep;145(Pt 9):2415–2422. doi: 10.1099/00221287-145-9-2415. [DOI] [PubMed] [Google Scholar]
  13. Fidel S., Doonan J. H., Morris N. R. Aspergillus nidulans contains a single actin gene which has unique intron locations and encodes a gamma-actin. Gene. 1988 Oct 30;70(2):283–293. doi: 10.1016/0378-1119(88)90200-4. [DOI] [PubMed] [Google Scholar]
  14. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Georgatsou E., Alexandraki D. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1994 May;14(5):3065–3073. doi: 10.1128/mcb.14.5.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gietz R. D., Schiestl R. H. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast. 1991 Apr;7(3):253–263. doi: 10.1002/yea.320070307. [DOI] [PubMed] [Google Scholar]
  17. Haas H., Zadra I., Stöffler G., Angermayr K. The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem. 1999 Feb 19;274(8):4613–4619. doi: 10.1074/jbc.274.8.4613. [DOI] [PubMed] [Google Scholar]
  18. Heymann P., Ernst J. F., Winkelmann G. A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. Biometals. 2000 Mar;13(1):65–72. doi: 10.1023/a:1009250017785. [DOI] [PubMed] [Google Scholar]
  19. Heymann P., Ernst J. F., Winkelmann G. Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000 May 15;186(2):221–227. doi: 10.1111/j.1574-6968.2000.tb09108.x. [DOI] [PubMed] [Google Scholar]
  20. Heymann P., Ernst J. F., Winkelmann G. Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. Biometals. 1999 Dec;12(4):301–306. doi: 10.1023/a:1009252118050. [DOI] [PubMed] [Google Scholar]
  21. Heymann Petra, Gerads Michaela, Schaller Martin, Dromer Francoise, Winkelmann Günther, Ernst Joachim F. The siderophore iron transporter of Candida albicans (Sit1p/Arn1p) mediates uptake of ferrichrome-type siderophores and is required for epithelial invasion. Infect Immun. 2002 Sep;70(9):5246–5255. doi: 10.1128/IAI.70.9.5246-5255.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Higgins D. G., Thompson J. D., Gibson T. J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402. doi: 10.1016/s0076-6879(96)66024-8. [DOI] [PubMed] [Google Scholar]
  23. Hu Chuan-Jiong, Bai Chen, Zheng Xin-De, Wang Yan-Ming, Wang Yue. Characterization and functional analysis of the siderophore-iron transporter CaArn1p in Candida albicans. J Biol Chem. 2002 Jun 11;277(34):30598–30605. doi: 10.1074/jbc.M204545200. [DOI] [PubMed] [Google Scholar]
  24. Ismail A., Bedell G. W., Lupan D. M. Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun. 1985 Jul 31;130(2):885–891. doi: 10.1016/0006-291x(85)90499-1. [DOI] [PubMed] [Google Scholar]
  25. Knight Simon A. B., Lesuisse Emmanuel, Stearman Robert, Klausner Richard D., Dancis Andrew. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology. 2002 Jan;148(Pt 1):29–40. doi: 10.1099/00221287-148-1-29. [DOI] [PubMed] [Google Scholar]
  26. Konetschny-Rapp S., Huschka H. G., Winkelmann G., Jung G. High-performance liquid chromatography of siderophores from fungi. Biol Met. 1988;1(1):9–17. doi: 10.1007/BF01128012. [DOI] [PubMed] [Google Scholar]
  27. Latgé J. P. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999 Apr;12(2):310–350. doi: 10.1128/cmr.12.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Leong S. A., Winkelmann G. Molecular biology of iron transport in fungi. Met Ions Biol Syst. 1998;35:147–186. [PubMed] [Google Scholar]
  29. Lesuisse E., Blaiseau P. L., Dancis A., Camadro J. M. Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology. 2001 Feb;147(Pt 2):289–298. doi: 10.1099/00221287-147-2-289. [DOI] [PubMed] [Google Scholar]
  30. Lesuisse E., Labbe P. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1989 Feb;135(2):257–263. doi: 10.1099/00221287-135-2-257. [DOI] [PubMed] [Google Scholar]
  31. Lesuisse E., Simon-Casteras M., Labbe P. Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology. 1998 Dec;144(Pt 12):3455–3462. doi: 10.1099/00221287-144-12-3455. [DOI] [PubMed] [Google Scholar]
  32. Lesuisse Emmanuel, Knight Simon A. B., Camadro Jean-Michel, Dancis Andrew. Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast. 2002 Mar 15;19(4):329–340. doi: 10.1002/yea.840. [DOI] [PubMed] [Google Scholar]
  33. Oberegger H., Schoeser M., Zadra I., Abt B., Haas H. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol. 2001 Sep;41(5):1077–1089. doi: 10.1046/j.1365-2958.2001.02586.x. [DOI] [PubMed] [Google Scholar]
  34. Oberegger H., Zadra I., Schoeser M., Abt B., Parson W., Haas H. Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem Soc Trans. 2002 Aug;30(4):781–783. doi: 10.1042/bst0300781. [DOI] [PubMed] [Google Scholar]
  35. Oberegger Harald, Schoeser Michelle, Zadra Ivo, Schrettl Markus, Parson Walther, Haas Hubertus. Regulation of freA, acoA, lysF, and cycA expression by iron availability in Aspergillus nidulans. Appl Environ Microbiol. 2002 Nov;68(11):5769–5772. doi: 10.1128/AEM.68.11.5769-5772.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  37. Pao S. S., Paulsen I. T., Saier M. H., Jr Major facilitator superfamily. Microbiol Mol Biol Rev. 1998 Mar;62(1):1–34. doi: 10.1128/mmbr.62.1.1-34.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Payne S. M. Detection, isolation, and characterization of siderophores. Methods Enzymol. 1994;235:329–344. doi: 10.1016/0076-6879(94)35151-1. [DOI] [PubMed] [Google Scholar]
  39. Punt P. J., Greaves P. A., Kuyvenhoven A., van Deutekom J. C., Kinghorn J. R., Pouwels P. H., van den Hondel C. A. A twin-reporter vector for simultaneous analysis of expression signals of divergently transcribed, contiguous genes in filamentous fungi. Gene. 1991 Jul 31;104(1):119–122. doi: 10.1016/0378-1119(91)90476-r. [DOI] [PubMed] [Google Scholar]
  40. Ramanan N., Wang Y. A high-affinity iron permease essential for Candida albicans virulence. Science. 2000 May 12;288(5468):1062–1064. doi: 10.1126/science.288.5468.1062. [DOI] [PubMed] [Google Scholar]
  41. Remm M., Storm C. E., Sonnhammer E. L. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J Mol Biol. 2001 Dec 14;314(5):1041–1052. doi: 10.1006/jmbi.2000.5197. [DOI] [PubMed] [Google Scholar]
  42. Robertson L. S., Causton H. C., Young R. A., Fink G. R. The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5984–5988. doi: 10.1073/pnas.100113397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Roosenberg J. M., 2nd, Lin Y. M., Lu Y., Miller M. J. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem. 2000 Feb;7(2):159–197. doi: 10.2174/0929867003375353. [DOI] [PubMed] [Google Scholar]
  44. Scazzocchio C. The fungal GATA factors. Curr Opin Microbiol. 2000 Apr;3(2):126–131. doi: 10.1016/s1369-5274(00)00063-1. [DOI] [PubMed] [Google Scholar]
  45. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  46. Sweet S. P., Douglas L. J. Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans. FEMS Microbiol Lett. 1991 May 1;64(1):87–91. doi: 10.1016/0378-1097(91)90214-u. [DOI] [PubMed] [Google Scholar]
  47. Tilburn J., Sarkar S., Widdick D. A., Espeso E. A., Orejas M., Mungroo J., Peñalva M. A., Arst H. N., Jr The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J. 1995 Feb 15;14(4):779–790. doi: 10.1002/j.1460-2075.1995.tb07056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Upshall A., Gilbert T., Saari G., O'Hara P. J., Weglenski P., Berse B., Miller K., Timberlake W. E. Molecular analysis of the argB gene of Aspergillus nidulans. Mol Gen Genet. 1986 Aug;204(2):349–354. doi: 10.1007/BF00425521. [DOI] [PubMed] [Google Scholar]
  49. Weinberg E. D. The role of iron in protozoan and fungal infectious diseases. J Eukaryot Microbiol. 1999 May-Jun;46(3):231–238. doi: 10.1111/j.1550-7408.1999.tb05119.x. [DOI] [PubMed] [Google Scholar]
  50. Weissman Ziva, Shemer Revital, Kornitzer Daniel. Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol. 2002 Jun;44(6):1551–1560. doi: 10.1046/j.1365-2958.2002.02976.x. [DOI] [PubMed] [Google Scholar]
  51. Wiebe C., Winkelmann G. Kinetic studies on the specificity of chelate-iron uptake in Aspergillus. J Bacteriol. 1975 Sep;123(3):837–842. doi: 10.1128/jb.123.3.837-842.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yamaguchi-Iwai Y., Dancis A., Klausner R. D. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J. 1995 Mar 15;14(6):1231–1239. doi: 10.1002/j.1460-2075.1995.tb07106.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Yun C. W., Bauler M., Moore R. E., Klebba P. E., Philpott C. C. The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem. 2000 Dec 18;276(13):10218–10223. doi: 10.1074/jbc.M010065200. [DOI] [PubMed] [Google Scholar]
  54. Yun C. W., Ferea T., Rashford J., Ardon O., Brown P. O., Botstein D., Kaplan J., Philpott C. C. Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem. 2000 Apr 7;275(14):10709–10715. doi: 10.1074/jbc.275.14.10709. [DOI] [PubMed] [Google Scholar]
  55. Yun C. W., Tiedeman J. S., Moore R. E., Philpott C. C. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters. J Biol Chem. 2000 May 26;275(21):16354–16359. doi: 10.1074/jbc.M001456200. [DOI] [PubMed] [Google Scholar]
  56. Zadra I., Abt B., Parson W., Haas H. xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl Environ Microbiol. 2000 Nov;66(11):4810–4816. doi: 10.1128/aem.66.11.4810-4816.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES