Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):385–393. doi: 10.1042/BJ20021281

Regulation of transcription by the heterogeneous nuclear ribonucleoprotein E1B-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7.

Julia Kzhyshkowska 1, Andre Rusch 1, Hans Wolf 1, Thomas Dobner 1
PMCID: PMC1223277  PMID: 12489984

Abstract

E1B-AP5 was initially identified as a target of the early adenovirus E1B-55 kDa protein during the course of lytic infection. E1B-AP5 belongs to the heterogeneous nuclear ribonucleoprotein family and was demonstrated to be involved in mRNA processing and transport [Gabler, Schutt, Groitl, Wolf, Shenk and Dobner (1998) J. Virol. 72, 7960-7971]. In the present paper, we demonstrate that E1B-AP5 differentially regulates basic and ligand-dependent transcription. We found that E1B-AP5 represses basic transcription driven by several virus and cellular promoters, and mapped the repression activity to the N-terminal part of the protein. In contrast with basic repression, E1B-AP5 activated the glucocorticoid-dependent promoter in the absence of dexamethasone, but did not contribute to the dexamethasone-induced activation. Mutant analysis indicated the presence of an additional cellular factor that modulates E1B-AP5 transcriptional activity. Using yeast two-hybrid screening, we identified a novel chromatin-associated bromodomain-containing protein, BRD7, as an E1B-AP5 interaction partner. We confirmed E1B-AP5-BRD7 complex formation in vivo and in vitro. We found that, although BRD7 binds to histones H2A, H2B, H3 and H4 through its bromodomain, this domain was not necessary for the interaction with E1B-AP5. Indeed, the triple complex formation of E1B-AP5, BRD7 and histones was demonstrated. Disruption of the E1B-AP5-BRD7 complex increased E1B-AP5 repression activity for basic transcription and converted it from being an activator of the hormone-dependent promoter into being a strong repressor. We conclude that complex formation between BRD7 and E1B-AP5 links chromatin events with mRNA processing at the level of transcriptional regulation.

Full Text

The Full Text of this article is available as a PDF (363.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachi A., Braun I. C., Rodrigues J. P., Panté N., Ribbeck K., von Kobbe C., Kutay U., Wilm M., Görlich D., Carmo-Fonseca M. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA. 2000 Jan;6(1):136–158. doi: 10.1017/s1355838200991994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Conrad N. K., Wilson S. M., Steinmetz E. J., Patturajan M., Brow D. A., Swanson M. S., Corden J. L. A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. Genetics. 2000 Feb;154(2):557–571. doi: 10.1093/genetics/154.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dhalluin C., Carlson J. E., Zeng L., He C., Aggarwal A. K., Zhou M. M. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999 Jun 3;399(6735):491–496. doi: 10.1038/20974. [DOI] [PubMed] [Google Scholar]
  4. Dobner T., Kzhyshkowska J. Nuclear export of adenovirus RNA. Curr Top Microbiol Immunol. 2001;259:25–54. doi: 10.1007/978-3-642-56597-7_2. [DOI] [PubMed] [Google Scholar]
  5. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  6. Dyson M. H., Rose S., Mahadevan L. C. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin. Front Biosci. 2001 Aug 1;6:D853–D865. doi: 10.2741/dyson. [DOI] [PubMed] [Google Scholar]
  7. Eggert H., Schulz M., Fackelmayer F. O., Renkawitz R., Eggert M. Effects of the heterogeneous nuclear ribonucleoprotein U (hnRNP U/SAF-A) on glucocorticoid-dependent transcription in vivo. J Steroid Biochem Mol Biol. 2001 Jul;78(1):59–65. doi: 10.1016/s0960-0760(01)00074-7. [DOI] [PubMed] [Google Scholar]
  8. Eggert M., Michel J., Schneider S., Bornfleth H., Baniahmad A., Fackelmayer F. O., Schmidt S., Renkawitz R. The glucocorticoid receptor is associated with the RNA-binding nuclear matrix protein hnRNP U. J Biol Chem. 1997 Nov 7;272(45):28471–28478. doi: 10.1074/jbc.272.45.28471. [DOI] [PubMed] [Google Scholar]
  9. Filetici P., P O., Ballario P. The bromodomain: a chromatin browser? Front Biosci. 2001 Aug 1;6:D866–D876. doi: 10.2741/filetici. [DOI] [PubMed] [Google Scholar]
  10. Gabler S., Schütt H., Groitl P., Wolf H., Shenk T., Dobner T. E1B 55-kilodalton-associated protein: a cellular protein with RNA-binding activity implicated in nucleocytoplasmic transport of adenovirus and cellular mRNAs. J Virol. 1998 Oct;72(10):7960–7971. doi: 10.1128/jvi.72.10.7960-7971.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gallimore P. H., Turnell A. S. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene. 2001 Nov 26;20(54):7824–7835. doi: 10.1038/sj.onc.1204913. [DOI] [PubMed] [Google Scholar]
  12. Hirose Y., Manley J. L. RNA polymerase II and the integration of nuclear events. Genes Dev. 2000 Jun 15;14(12):1415–1429. [PubMed] [Google Scholar]
  13. Hudson B. P., Martinez-Yamout M. A., Dyson H. J., Wright P. E. Solution structure and acetyl-lysine binding activity of the GCN5 bromodomain. J Mol Biol. 2000 Dec 1;304(3):355–370. doi: 10.1006/jmbi.2000.4207. [DOI] [PubMed] [Google Scholar]
  14. Jacobson R. H., Ladurner A. G., King D. S., Tjian R. Structure and function of a human TAFII250 double bromodomain module. Science. 2000 May 26;288(5470):1422–1425. doi: 10.1126/science.288.5470.1422. [DOI] [PubMed] [Google Scholar]
  15. Kim M. K., Nikodem V. M. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation. Mol Cell Biol. 1999 Oct;19(10):6833–6844. doi: 10.1128/mcb.19.10.6833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kipp M., Göhring F., Ostendorp T., van Drunen C. M., van Driel R., Przybylski M., Fackelmayer F. O. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol. 2000 Oct;20(20):7480–7489. doi: 10.1128/mcb.20.20.7480-7489.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krecic A. M., Swanson M. S. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999 Jun;11(3):363–371. doi: 10.1016/S0955-0674(99)80051-9. [DOI] [PubMed] [Google Scholar]
  18. Kzhyshkowska J., Schütt H., Liss M., Kremmer E., Stauber R., Wolf H., Dobner T. Heterogeneous nuclear ribonucleoprotein E1B-AP5 is methylated in its Arg-Gly-Gly (RGG) box and interacts with human arginine methyltransferase HRMT1L1. Biochem J. 2001 Sep 1;358(Pt 2):305–314. doi: 10.1042/0264-6021:3580305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lei E. P., Krebber H., Silver P. A. Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 2001 Jul 15;15(14):1771–1782. doi: 10.1101/gad.892401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin M. E., Berk A. J. Adenovirus E1B 55K represses p53 activation in vitro. J Virol. 1998 Apr;72(4):3146–3154. doi: 10.1128/jvi.72.4.3146-3154.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin M. E., Berk A. J. Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol Cell Biol. 1999 May;19(5):3403–3414. doi: 10.1128/mcb.19.5.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakielny S., Dreyfuss G. Nuclear export of proteins and RNAs. Curr Opin Cell Biol. 1997 Jun;9(3):420–429. doi: 10.1016/s0955-0674(97)80016-6. [DOI] [PubMed] [Google Scholar]
  23. Nakielny S., Fischer U., Michael W. M., Dreyfuss G. RNA transport. Annu Rev Neurosci. 1997;20:269–301. doi: 10.1146/annurev.neuro.20.1.269. [DOI] [PubMed] [Google Scholar]
  24. Nevels M., Rubenwolf S., Spruss T., Wolf H., Dobner T. The adenovirus E4orf6 protein can promote E1A/E1B-induced focus formation by interfering with p53 tumor suppressor function. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1206–1211. doi: 10.1073/pnas.94.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ornaghi P., Ballario P., Lena A. M., González A., Filetici P. The bromodomain of Gcn5p interacts in vitro with specific residues in the N terminus of histone H4. J Mol Biol. 1999 Mar 19;287(1):1–7. doi: 10.1006/jmbi.1999.2577. [DOI] [PubMed] [Google Scholar]
  26. Oswald F., Dobner T., Lipp M. The E2F transcription factor activates a replication-dependent human H2A gene in early S phase of the cell cycle. Mol Cell Biol. 1996 May;16(5):1889–1895. doi: 10.1128/mcb.16.5.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Owen D. J., Ornaghi P., Yang J. C., Lowe N., Evans P. R., Ballario P., Neuhaus D., Filetici P., Travers A. A. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J. 2000 Nov 15;19(22):6141–6149. doi: 10.1093/emboj/19.22.6141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Parks C. L., Banerjee S., Spector D. J. Organization of the transcriptional control region of the E1b gene of adenovirus type 5. J Virol. 1988 Jan;62(1):54–67. doi: 10.1128/jvi.62.1.54-67.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pfitzner E., Jähne R., Wissler M., Stoecklin E., Groner B. p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol. 1998 Oct;12(10):1582–1593. doi: 10.1210/mend.12.10.0180. [DOI] [PubMed] [Google Scholar]
  30. Rosorius O., Heger P., Stelz G., Hirschmann N., Hauber J., Stauber R. H. Direct observation of nucleocytoplasmic transport by microinjection of GFP-tagged proteins in living cells. Biotechniques. 1999 Aug;27(2):350–355. doi: 10.2144/99272rr02. [DOI] [PubMed] [Google Scholar]
  31. Staal A., Enserink J. M., Stein J. L., Stein G. S., van Wijnen A. J. Molecular characterization of celtix-1, a bromodomain protein interacting with the transcription factor interferon regulatory factor 2. J Cell Physiol. 2000 Nov;185(2):269–279. doi: 10.1002/1097-4652(200011)185:2<269::AID-JCP12>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  32. Winkler M., aus Dem Siepen T., Stamminger T. Functional interaction between pleiotropic transactivator pUL69 of human cytomegalovirus and the human homolog of yeast chromatin regulatory protein SPT6. J Virol. 2000 Sep;74(17):8053–8064. doi: 10.1128/jvi.74.17.8053-8064.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Winston F., Allis C. D. The bromodomain: a chromatin-targeting module? Nat Struct Biol. 1999 Jul;6(7):601–604. doi: 10.1038/10640. [DOI] [PubMed] [Google Scholar]
  34. Yew P. R., Berk A. J. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature. 1992 May 7;357(6373):82–85. doi: 10.1038/357082a0. [DOI] [PubMed] [Google Scholar]
  35. Yew P. R., Kao C. C., Berk A. J. Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology. 1990 Dec;179(2):795–805. doi: 10.1016/0042-6822(90)90147-j. [DOI] [PubMed] [Google Scholar]
  36. Yew P. R., Liu X., Berk A. J. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev. 1994 Jan;8(2):190–202. doi: 10.1101/gad.8.2.190. [DOI] [PubMed] [Google Scholar]
  37. Yoshida T., Kokura K., Makino Y., Ossipow V., Tamura T. Heterogeneous nuclear RNA-ribonucleoprotein F binds to DNA via an oligo(dG)-motif and is associated with RNA polymerase II. Genes Cells. 1999 Dec;4(12):707–719. doi: 10.1046/j.1365-2443.1999.00295.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES