Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):621–629. doi: 10.1042/BJ20021667

Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid.

Rafat A Siddiqui 1, Laura J Jenski 1, Kevin A Harvey 1, Jacqueline D Wiesehan 1, William Stillwell 1, Gary P Zaloga 1
PMCID: PMC1223278  PMID: 12492401

Abstract

Docosahexaenoic acid (DHA) is known to have anti-cancer activities by mechanisms that are not well understood. In the present study, we test one possible pathway for DHA action in Jurkat leukaemic cells. Low doses of DHA (10 microM) are shown to induce cell-cycle arrest, whereas higher doses are cytotoxic. However, when cells that were pre-treated with 10 microM DHA are given an additional 10 microM DHA dose, cell viability rapidly decreases. Immunoblotting reveals that repeated low doses of DHA results in activation of caspase 3, implying induction of apoptosis. DHA (10 microM) is shown to increase ceramide levels after 6 h of incubation and, after 24 h, the cells appear to be arrested in S phase. With DHA, the amount of phosphorylated retinoblastoma protein (pRb) decreases significantly. Western blot analysis also shows that DHA greatly reduces the level of cyclin A, while increasing the level of p21 WAF1, a cellular inhibitor of cyclin A/cyclin-dependent kinase 2 (cdk2) activity. Furthermore, the observed DHA-induced doubling of the ratio of hypophosphorylated pRb (hypo-pRb) to total pRb is inhibited by tautomycin and phosphatidic acid (PA), known inhibitors of protein phosphatase 1 (PP1), and by the PP2 inhibitor okadaic acid. The present study demonstrates one possible connected pathway for DHA action. By this pathway, low doses of DHA increase ceramide levels, which leads to inhibition of cdk2 activity and stimulation of PP1 and PP2A. The net effect of cdk2 inhibition and protein phosphatase activation is an inhibition of pRb phosphorylation, consequently arresting Jurkat cell growth.

Full Text

The Full Text of this article is available as a PDF (279.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albino A. P., Juan G., Traganos F., Reinhart L., Connolly J., Rose D. P., Darzynkiewicz Z. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation. Cancer Res. 2000 Aug 1;60(15):4139–4145. [PubMed] [Google Scholar]
  2. Aranha O., Wood D. P., Jr, Sarkar F. H. Ciprofloxacin mediated cell growth inhibition, S/G2-M cell cycle arrest, and apoptosis in a human transitional cell carcinoma of the bladder cell line. Clin Cancer Res. 2000 Mar;6(3):891–900. [PubMed] [Google Scholar]
  3. Butler R., Mitchell S. H., Tindall D. J., Young C. Y. Nonapoptotic cell death associated with S-phase arrest of prostate cancer cells via the peroxisome proliferator-activated receptor gamma ligand, 15-deoxy-delta12,14-prostaglandin J2. Cell Growth Differ. 2000 Jan;11(1):49–61. [PubMed] [Google Scholar]
  4. Calviello G., Palozza P., Maggiano N., Piccioni E., Franceschelli P., Frattucci A., Di Nicuolo F., Bartoli G. M. Cell proliferation, differentiation, and apoptosis are modified by n-3 polyunsaturated fatty acids in normal colonic mucosa. Lipids. 1999 Jun;34(6):599–604. doi: 10.1007/s11745-999-0404-6. [DOI] [PubMed] [Google Scholar]
  5. Calviello G., Palozza P., Piccioni E., Maggiano N., Frattucci A., Franceschelli P., Bartoli G. M. Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: effects on proliferation and apoptosis. Int J Cancer. 1998 Mar 2;75(5):699–705. doi: 10.1002/(sici)1097-0215(19980302)75:5<699::aid-ijc7>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  6. Chalfant C. E., Kishikawa K., Mumby M. C., Kamibayashi C., Bielawska A., Hannun Y. A. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999 Jul 16;274(29):20313–20317. doi: 10.1074/jbc.274.29.20313. [DOI] [PubMed] [Google Scholar]
  7. Chapman J. R., Tazaki H., Mallouh C., Konno S. Brefeldin A-induced apoptosis in prostatic cancer DU-145 cells: a possible p53-independent death pathway. BJU Int. 1999 Apr;83(6):703–708. doi: 10.1046/j.1464-410x.1999.00973.x. [DOI] [PubMed] [Google Scholar]
  8. Chatterjee M., Wu S. Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol Cell Biochem. 2001 Mar;219(1-2):21–27. doi: 10.1023/a:1011083818452. [DOI] [PubMed] [Google Scholar]
  9. Chen Z. Y., Istfan N. W. Docosahexaenoic acid is a potent inducer of apoptosis in HT-29 colon cancer cells. Prostaglandins Leukot Essent Fatty Acids. 2000 Nov;63(5):301–308. doi: 10.1054/plef.2000.0218. [DOI] [PubMed] [Google Scholar]
  10. Chen Z. Y., Istfan N. W. Docosahexaenoic acid, a major constituent of fish oil diets, prevents activation of cyclin-dependent kinases and S-phase entry by serum stimulation in HT-29 cells. Prostaglandins Leukot Essent Fatty Acids. 2001 Jan;64(1):67–73. doi: 10.1054/plef.2000.0239. [DOI] [PubMed] [Google Scholar]
  11. Clamp A. G., Ladha S., Clark D. C., Grimble R. F., Lund E. K. The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane. Lipids. 1997 Feb;32(2):179–184. doi: 10.1007/s11745-997-0022-3. [DOI] [PubMed] [Google Scholar]
  12. Colquhoun A. Induction of apoptosis by polyunsaturated fatty acids and its relationship to fatty acid inhibition of carnitine palmitoyltransferase I activity in Hep2 cells. Biochem Mol Biol Int. 1998 Jun;45(2):331–336. doi: 10.1080/15216549800202702. [DOI] [PubMed] [Google Scholar]
  13. Connolly J. M., Gilhooly E. M., Rose D. P. Effects of reduced dietary linoleic acid intake, alone or combined with an algal source of docosahexaenoic acid, on MDA-MB-231 breast cancer cell growth and apoptosis in nude mice. Nutr Cancer. 1999;35(1):44–49. doi: 10.1207/S1532791444-49. [DOI] [PubMed] [Google Scholar]
  14. Diggle C. P., Pitt E., Roberts P., Trejdosiewicz L. K., Southgate J. N;-3 and n;-6 polyunsaturated fatty acids induce cytostasis in human urothelial cells independent of p53 gene function. J Lipid Res. 2000 Sep;41(9):1509–1515. [PubMed] [Google Scholar]
  15. Ehringer W., Belcher D., Wassall S. R., Stillwell W. A comparison of the effects of linolenic (18:3 omega 3) and docosahexaenoic (22:6 omega 3) acids on phospholipid bilayers. Chem Phys Lipids. 1990 May;54(2):79–88. doi: 10.1016/0009-3084(90)90063-w. [DOI] [PubMed] [Google Scholar]
  16. Fukuoka K., Nishio K., Fukumoto H., Arioka H., Kurokawa H., Ishida T., Iwamoto Y., Tomonari A., Suzuki T., Usuda J. Ectopic p16(ink4) expression enhances CPT-11-induced apoptosis through increased delay in S-phase progression in human non-small-cell-lung-cancer cells. Int J Cancer. 2000 Apr 15;86(2):197–203. doi: 10.1002/(sici)1097-0215(20000415)86:2<197::aid-ijc8>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  17. Hawkins R. A., Sangster K., Arends M. J. Apoptotic death of pancreatic cancer cells induced by polyunsaturated fatty acids varies with double bond number and involves an oxidative mechanism. J Pathol. 1998 May;185(1):61–70. doi: 10.1002/(SICI)1096-9896(199805)185:1<61::AID-PATH49>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  18. Hellin A. C., Bentires-Alj M., Verlaet M., Benoit V., Gielen J., Bours V., Merville M. P. Roles of nuclear factor-kappaB, p53, and p21/WAF1 in daunomycin-induced cell cycle arrest and apoptosis. J Pharmacol Exp Ther. 2000 Dec;295(3):870–878. [PubMed] [Google Scholar]
  19. Hsieh T. C., Wu J. M. Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines. Exp Cell Res. 1999 May 25;249(1):109–115. doi: 10.1006/excr.1999.4471. [DOI] [PubMed] [Google Scholar]
  20. Huang W. H., Kakar S. S., Askari A. Activation of (Na++K+)-ATPase by long-chain fatty acids and fatty acyl coenzymes A. Biochem Int. 1986 Apr;12(4):521–528. [PubMed] [Google Scholar]
  21. Jayadev S., Liu B., Bielawska A. E., Lee J. Y., Nazaire F., Pushkareva MYu, Obeid L. M., Hannun Y. A. Role for ceramide in cell cycle arrest. J Biol Chem. 1995 Feb 3;270(5):2047–2052. doi: 10.1074/jbc.270.5.2047. [DOI] [PubMed] [Google Scholar]
  22. Jones C. B., Clements M. K., Wasi S., Daoud S. S. Enhancement of camptothecin-induced cytotoxicity with UCN-01 in breast cancer cells: abrogation of S/G(2) arrest. Cancer Chemother Pharmacol. 2000;45(3):252–258. doi: 10.1007/s002800050037. [DOI] [PubMed] [Google Scholar]
  23. Kang J. X., Leaf A. Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3542–3546. doi: 10.1073/pnas.93.8.3542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kim W. H., Kang K. H., Kim M. Y., Choi K. H. Induction of p53-independent p21 during ceramide-induced G1 arrest in human hepatocarcinoma cells. Biochem Cell Biol. 2000;78(2):127–135. [PubMed] [Google Scholar]
  25. Kishikawa K., Chalfant C. E., Perry D. K., Bielawska A., Hannun Y. A. Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses. J Biol Chem. 1999 Jul 23;274(30):21335–21341. doi: 10.1074/jbc.274.30.21335. [DOI] [PubMed] [Google Scholar]
  26. Le X. F., McWatters A., Wiener J., Wu J. Y., Mills G. B., Bast R. C., Jr Anti-HER2 antibody and heregulin suppress growth of HER2-overexpressing human breast cancer cells through different mechanisms. Clin Cancer Res. 2000 Jan;6(1):260–270. [PubMed] [Google Scholar]
  27. Lee J. Y., Bielawska A. E., Obeid L. M. Regulation of cyclin-dependent kinase 2 activity by ceramide. Exp Cell Res. 2000 Dec 15;261(2):303–311. doi: 10.1006/excr.2000.5028. [DOI] [PubMed] [Google Scholar]
  28. Lee J. Y., Leonhardt L. G., Obeid L. M. Cell-cycle-dependent changes in ceramide levels preceding retinoblastoma protein dephosphorylation in G2/M. Biochem J. 1998 Sep 1;334(Pt 2):457–461. doi: 10.1042/bj3340457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Liang J. Y., Fontana J. A., Rao J. N., Ordonez J. V., Dawson M. I., Shroot B., Wilber J. F., Feng P. Synthetic retinoid CD437 induces S-phase arrest and apoptosis in human prostate cancer cells LNCaP and PC-3. Prostate. 1999 Feb 15;38(3):228–236. doi: 10.1002/(sici)1097-0045(19990215)38:3<228::aid-pros7>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  30. Litman B. J., Mitchell D. C. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids. 1996 Mar;31 (Suppl):S193–S197. doi: 10.1007/BF02637075. [DOI] [PubMed] [Google Scholar]
  31. Ludlow J. W., Glendening C. L., Livingston D. M., DeCarprio J. A. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol. 1993 Jan;13(1):367–372. doi: 10.1128/mcb.13.1.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lundberg A. S., Weinberg R. A. Control of the cell cycle and apoptosis. Eur J Cancer. 1999 Apr;35(4):531–539. [PubMed] [Google Scholar]
  33. Mills J. C., Lee V. M., Pittman R. N. Activation of a PP2A-like phosphatase and dephosphorylation of tau protein characterize onset of the execution phase of apoptosis. J Cell Sci. 1998 Mar;111(Pt 5):625–636. doi: 10.1242/jcs.111.5.625. [DOI] [PubMed] [Google Scholar]
  34. Mittnacht S. Control of pRB phosphorylation. Curr Opin Genet Dev. 1998 Feb;8(1):21–27. doi: 10.1016/s0959-437x(98)80057-9. [DOI] [PubMed] [Google Scholar]
  35. Narayanan B. A., Narayanan N. K., Reddy B. S. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol. 2001 Dec;19(6):1255–1262. doi: 10.3892/ijo.19.6.1255. [DOI] [PubMed] [Google Scholar]
  36. Norrish A. E., Skeaff C. M., Arribas G. L., Sharpe S. J., Jackson R. T. Prostate cancer risk and consumption of fish oils: a dietary biomarker-based case-control study. Br J Cancer. 1999 Dec;81(7):1238–1242. doi: 10.1038/sj.bjc.6690835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ogilvie G. K., Fettman M. J., Mallinckrodt C. H., Walton J. A., Hansen R. A., Davenport D. J., Gross K. L., Richardson K. L., Rogers Q., Hand M. S. Effect of fish oil, arginine, and doxorubicin chemotherapy on remission and survival time for dogs with lymphoma: a double-blind, randomized placebo-controlled study. Cancer. 2000 Apr 15;88(8):1916–1928. [PubMed] [Google Scholar]
  38. Rudra P. K., Krokan H. E. Acrolein cytotoxicity and glutathione depletion in n-3 fatty acid sensitive- and resistant human tumor cells. Anticancer Res. 1999 Jan-Feb;19(1A):461–469. [PubMed] [Google Scholar]
  39. Scherer J. M., Stillwell W., Jenski L. J. Spleen cell survival and proliferation are differentially altered by docosahexaenoic acid. Cell Immunol. 1997 Sep 15;180(2):153–161. doi: 10.1006/cimm.1997.1187. [DOI] [PubMed] [Google Scholar]
  40. Shaikh S. R., Dumaual A. C., Jenski L. J., Stillwell W. Lipid phase separation in phospholipid bilayers and monolayers modeling the plasma membrane. Biochim Biophys Acta. 2001 Jun 6;1512(2):317–328. doi: 10.1016/s0005-2736(01)00335-2. [DOI] [PubMed] [Google Scholar]
  41. Siddiqui R. A., Jenski L. J., Neff K., Harvey K., Kovacs R. J., Stillwell W. Docosahexaenoic acid induces apoptosis in Jurkat cells by a protein phosphatase-mediated process. Biochim Biophys Acta. 2001 Jan 15;1499(3):265–275. doi: 10.1016/s0167-4889(00)00128-2. [DOI] [PubMed] [Google Scholar]
  42. Siddiqui R. A., Jenski L. J., Wiesehan J. D., Hunter M. V., Kovacs R. J., Stillwell W. Prevention of docosahexaenoic acid-induced cytotoxicity by phosphatidic acid in Jurkat leukemic cells: the role of protein phosphatase-1. Biochim Biophys Acta. 2001 Dec 19;1541(3):188–200. doi: 10.1016/s0167-4889(01)00143-4. [DOI] [PubMed] [Google Scholar]
  43. Slater S. J., Kelly M. B., Taddeo F. J., Ho C., Rubin E., Stubbs C. D. The modulation of protein kinase C activity by membrane lipid bilayer structure. J Biol Chem. 1994 Feb 18;269(7):4866–4871. [PubMed] [Google Scholar]
  44. Stillman B. Cell cycle control of DNA replication. Science. 1996 Dec 6;274(5293):1659–1664. doi: 10.1126/science.274.5293.1659. [DOI] [PubMed] [Google Scholar]
  45. Stillwell W., Jenski L. J., Crump F. T., Ehringer W. Effect of docosahexaenoic acid on mouse mitochondrial membrane properties. Lipids. 1997 May;32(5):497–506. doi: 10.1007/s11745-997-0064-6. [DOI] [PubMed] [Google Scholar]
  46. Terano T., Tanaka T., Tamura Y., Kitagawa M., Higashi H., Saito Y., Hirai A. Eicosapentaenoic acid and docosahexaenoic acid inhibit vascular smooth muscle cell proliferation by inhibiting phosphorylation of Cdk2-cyclinE complex. Biochem Biophys Res Commun. 1999 Jan 19;254(2):502–506. doi: 10.1006/bbrc.1998.9976. [DOI] [PubMed] [Google Scholar]
  47. Timmer-Bosscha H., de Vries E. G., Meijer C., Oosterhuis J. W., Mulder N. H. Differential effects of all-trans-retinoic acid, docosahexaenoic acid, and hexadecylphosphocholine on cisplatin-induced cytotoxicity and apoptosis in a cisplantin-sensitive and resistant human embryonal carcinoma cell line. Cancer Chemother Pharmacol. 1998;41(6):469–476. doi: 10.1007/s002800050769. [DOI] [PubMed] [Google Scholar]
  48. Tonnetti L., Verí M. C., Bonvini E., D'Adamio L. A role for neutral sphingomyelinase-mediated ceramide production in T cell receptor-induced apoptosis and mitogen-activated protein kinase-mediated signal transduction. J Exp Med. 1999 May 17;189(10):1581–1589. doi: 10.1084/jem.189.10.1581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Urquhart P., Parkin S. M., Nicolaou A. Profile of eicosanoids produced by human saphenous vein endothelial cells and the effect of dietary fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2001 Jul;65(1):15–22. doi: 10.1054/plef.2001.0282. [DOI] [PubMed] [Google Scholar]
  50. Wolf C. M., Eastman A. The temporal relationship between protein phosphatase, mitochondrial cytochrome c release, and caspase activation in apoptosis. Exp Cell Res. 1999 Mar 15;247(2):505–513. doi: 10.1006/excr.1998.4380. [DOI] [PubMed] [Google Scholar]
  51. Yamane N., Makino M., Kaibara N. S-phase accumulation precedes apoptosis induced by preoperative treatment with 5-fluorouracil in human colorectal carcinoma cells. Cancer. 1999 Jan 15;85(2):309–317. doi: 10.1002/(sici)1097-0142(19990115)85:2<309::aid-cncr7>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  52. Zerouga M., Jenski L. J., Booster S., Stillwell W. Can docosahexaenoic acid inhibit metastasis by decreasing deformability of the tumor cell plasma membrane? Cancer Lett. 1997 Nov 11;119(2):163–168. doi: 10.1016/s0304-3835(97)00275-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES