Abstract
The store-operated calcium-release-activated calcium current, I (CRAC), is a major mechanism for calcium entry into non-excitable cells. I (CRAC) refills calcium stores and permits sustained calcium signalling. The relationship between inositol 1,4,5-trisphosphate receptor (InsP(3)R)-containing stores and I (CRAC) is not understood. A model of global InsP(3)R store depletion coupling with I (CRAC) activation may be simplistic, since intracellular stores are heterogeneous in their release and refilling activities. Here we use a ligand-gated calcium channel, TRPV1 (transient receptor potential channel, vanilloid subfamily member 1), as a new tool to probe store heterogeneity and define intracellular calcium compartments in a mast cell line. TRPV1 has activity as an intracellular release channel but does not mediate global calcium store depletion and does not invade a store coupled with I (CRAC). Intracellular TRPV1 localizes to a subset of the InsP(3)R-containing stores. TRPV1 sensitivity functionally subdivides the InsP(3)-sensitive store, as does heterogeneity in the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase isoforms responsible for store refilling. These results provide unequivocal evidence that a specific 'CRAC store' exists within the InsP(3)-releasable calcium stores and describe a novel methodology for manipulation of intracellular free calcium.
Full Text
The Full Text of this article is available as a PDF (234.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acs G., Palkovits M., Blumberg P. M. Specific binding of [3H]resiniferatoxin by human and rat preoptic area, locus ceruleus, medial hypothalamus, reticular formation and ventral thalamus membrane preparations. Life Sci. 1996;59(22):1899–1908. doi: 10.1016/s0024-3205(96)00537-1. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Bootman M. D., Lipp P. Calcium--a life and death signal. Nature. 1998 Oct 15;395(6703):645–648. doi: 10.1038/27094. [DOI] [PubMed] [Google Scholar]
- Broad L. M., Armstrong D. L., Putney J. W., Jr Role of the inositol 1,4,5-trisphosphate receptor in Ca(2+) feedback inhibition of calcium release-activated calcium current (I(crac)). J Biol Chem. 1999 Nov 12;274(46):32881–32888. doi: 10.1074/jbc.274.46.32881. [DOI] [PubMed] [Google Scholar]
- Caterina M. J., Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487–517. doi: 10.1146/annurev.neuro.24.1.487. [DOI] [PubMed] [Google Scholar]
- Caterina M. J., Schumacher M. A., Tominaga M., Rosen T. A., Levine J. D., Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997 Oct 23;389(6653):816–824. doi: 10.1038/39807. [DOI] [PubMed] [Google Scholar]
- Crabtree G. R. Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell. 1999 Mar 5;96(5):611–614. doi: 10.1016/s0092-8674(00)80571-1. [DOI] [PubMed] [Google Scholar]
- Dolmetsch R. E., Lewis R. S., Goodnow C. C., Healy J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 1997 Apr 24;386(6627):855–858. doi: 10.1038/386855a0. [DOI] [PubMed] [Google Scholar]
- Golovina V. A., Blaustein M. P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum. Science. 1997 Mar 14;275(5306):1643–1648. doi: 10.1126/science.275.5306.1643. [DOI] [PubMed] [Google Scholar]
- Guo W., Roth D., Walch-Solimena C., Novick P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 1999 Feb 15;18(4):1071–1080. doi: 10.1093/emboj/18.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajós M., Jancsó G., Engberg G. Capsaicin-induced excitation of locus coeruleus neurons. Acta Physiol Scand. 1987 Mar;129(3):415–420. doi: 10.1111/j.1748-1716.1987.tb08086.x. [DOI] [PubMed] [Google Scholar]
- Hermosura M. C., Takeuchi H., Fleig A., Riley A. M., Potter B. V., Hirata M., Penner R. InsP4 facilitates store-operated calcium influx by inhibition of InsP3 5-phosphatase. Nature. 2000 Dec 7;408(6813):735–740. doi: 10.1038/35047115. [DOI] [PubMed] [Google Scholar]
- Hinchliffe Katherine A., Giudici Maria Luisa, Letcher Andrew J., Irvine Robin F. Type IIalpha phosphatidylinositol phosphate kinase associates with the plasma membrane via interaction with type I isoforms. Biochem J. 2002 May 1;363(Pt 3):563–570. doi: 10.1042/0264-6021:3630563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirose K., Iino M. Heterogeneity of channel density in inositol-1,4,5-trisphosphate-sensitive Ca2+ stores. Nature. 1994 Dec 22;372(6508):791–794. doi: 10.1038/372791a0. [DOI] [PubMed] [Google Scholar]
- Hofer A. M., Fasolato C., Pozzan T. Capacitative Ca2+ entry is closely linked to the filling state of internal Ca2+ stores: a study using simultaneous measurements of ICRAC and intraluminal [Ca2+]. J Cell Biol. 1998 Jan 26;140(2):325–334. doi: 10.1083/jcb.140.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoth M., Penner R. Calcium release-activated calcium current in rat mast cells. J Physiol. 1993 Jun;465:359–386. doi: 10.1113/jphysiol.1993.sp019681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
- Irvine R. Inositol phosphates: Does IP(4) run a protection racket? Curr Biol. 2001 Mar 6;11(5):R172–R174. doi: 10.1016/s0960-9822(01)00086-0. [DOI] [PubMed] [Google Scholar]
- Jaconi M., Pyle J., Bortolon R., Ou J., Clapham D. Calcium release and influx colocalize to the endoplasmic reticulum. Curr Biol. 1997 Aug 1;7(8):599–602. doi: 10.1016/s0960-9822(06)00259-4. [DOI] [PubMed] [Google Scholar]
- Lazaroff M., Dunlap K., Chikaraishi D. M. A CNS catecholaminergic cell line expresses voltage-gated currents. J Membr Biol. 1996 Jun;151(3):279–291. doi: 10.1007/s002329900078. [DOI] [PubMed] [Google Scholar]
- Lewis R. S., Cahalan M. D. Potassium and calcium channels in lymphocytes. Annu Rev Immunol. 1995;13:623–653. doi: 10.1146/annurev.iy.13.040195.003203. [DOI] [PubMed] [Google Scholar]
- Meldolesi J., Pozzan T. The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol. 1998 Sep 21;142(6):1395–1398. doi: 10.1083/jcb.142.6.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minke Baruch, Cook Boaz. TRP channel proteins and signal transduction. Physiol Rev. 2002 Apr;82(2):429–472. doi: 10.1152/physrev.00001.2002. [DOI] [PubMed] [Google Scholar]
- Miyakawa T., Maeda A., Yamazawa T., Hirose K., Kurosaki T., Iino M. Encoding of Ca2+ signals by differential expression of IP3 receptor subtypes. EMBO J. 1999 Mar 1;18(5):1303–1308. doi: 10.1093/emboj/18.5.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monkawa T., Miyawaki A., Sugiyama T., Yoneshima H., Yamamoto-Hino M., Furuichi T., Saruta T., Hasegawa M., Mikoshiba K. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem. 1995 Jun 16;270(24):14700–14704. doi: 10.1074/jbc.270.24.14700. [DOI] [PubMed] [Google Scholar]
- Montell Craig, Birnbaumer Lutz, Flockerzi Veit. The TRP channels, a remarkably functional family. Cell. 2002 Mar 8;108(5):595–598. doi: 10.1016/s0092-8674(02)00670-0. [DOI] [PubMed] [Google Scholar]
- Newton C. L., Mignery G. A., Südhof T. C. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP3) receptors with distinct affinities for InsP3. J Biol Chem. 1994 Nov 18;269(46):28613–28619. [PubMed] [Google Scholar]
- Olah Z., Szabo T., Karai L., Hough C., Fields R. D., Caudle R. M., Blumberg P. M., Iadarola M. J. Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem. 2000 Dec 21;276(14):11021–11030. doi: 10.1074/jbc.M008392200. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Fleig A., Penner R. The store-operated calcium current I(CRAC): nonlinear activation by InsP3 and dissociation from calcium release. Cell. 1997 Jun 13;89(6):973–980. doi: 10.1016/s0092-8674(00)80282-2. [DOI] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Activation of store-operated calcium influx at resting InsP3 levels by sensitization of the InsP3 receptor in rat basophilic leukaemia cells. J Physiol. 1995 Dec 1;489(Pt 2):377–382. doi: 10.1113/jphysiol.1995.sp021058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Regulation of store-operated calcium currents in mast cells. Soc Gen Physiol Ser. 1996;51:231–239. [PubMed] [Google Scholar]
- Parekh A. B., Penner R. Store depletion and calcium influx. Physiol Rev. 1997 Oct;77(4):901–930. doi: 10.1152/physrev.1997.77.4.901. [DOI] [PubMed] [Google Scholar]
- Patterson R. L., van Rossum D. B., Gill D. L. Store-operated Ca2+ entry: evidence for a secretion-like coupling model. Cell. 1999 Aug 20;98(4):487–499. doi: 10.1016/s0092-8674(00)81977-7. [DOI] [PubMed] [Google Scholar]
- Petersen C. C., Berridge M. J. Capacitative calcium entry is colocalised with calcium release in Xenopus oocytes: evidence against a highly diffusible calcium influx factor. Pflugers Arch. 1996 Jun;432(2):286–292. doi: 10.1007/s004240050135. [DOI] [PubMed] [Google Scholar]
- Pinton P., Pozzan T., Rizzuto R. The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2+ store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J. 1998 Sep 15;17(18):5298–5308. doi: 10.1093/emboj/17.18.5298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Putney J. W., Jr, McKay R. R. Capacitative calcium entry channels. Bioessays. 1999 Jan;21(1):38–46. doi: 10.1002/(SICI)1521-1878(199901)21:1<38::AID-BIES5>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Rooney E., Meldolesi J. The endoplasmic reticulum in PC12 cells. Evidence for a mosaic of domains differently specialized in Ca2+ handling. J Biol Chem. 1996 Nov 15;271(46):29304–29311. doi: 10.1074/jbc.271.46.29304. [DOI] [PubMed] [Google Scholar]
- Savidge J. R., Ranasinghe S. P., Rang H. P. Comparison of intracellular calcium signals evoked by heat and capsaicin in cultured rat dorsal root ganglion neurons and in a cell line expressing the rat vanilloid receptor, VR1. Neuroscience. 2001;102(1):177–184. doi: 10.1016/s0306-4522(00)00447-4. [DOI] [PubMed] [Google Scholar]
- Schell M. J., Erneux C., Irvine R. F. Inositol 1,4,5-trisphosphate 3-kinase A associates with F-actin and dendritic spines via its N terminus. J Biol Chem. 2001 Jul 23;276(40):37537–37546. doi: 10.1074/jbc.M104101200. [DOI] [PubMed] [Google Scholar]
- Smith P. M., Gallacher D. V. Thapsigargin-induced Ca2+ mobilization in acutely isolated mouse lacrimal acinar cells is dependent on a basal level of Ins(1,4,5)P3 and is inhibited by heparin. Biochem J. 1994 Apr 1;299(Pt 1):37–40. doi: 10.1042/bj2990037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suri C., Fung B. P., Tischler A. S., Chikaraishi D. M. Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice. J Neurosci. 1993 Mar;13(3):1280–1291. doi: 10.1523/JNEUROSCI.13-03-01280.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waldron R. T., Short A. D., Gill D. L. Store-operated Ca2+ entry and coupling to Ca2+ pool depletion in thapsigargin-resistant cells. J Biol Chem. 1997 Mar 7;272(10):6440–6447. doi: 10.1074/jbc.272.10.6440. [DOI] [PubMed] [Google Scholar]
- Waldron R. T., Short A. D., Gill D. L. Thapsigargin-resistant intracellular calcium pumps. Role in calcium pool function and growth of thapsigargin-resistant cells. J Biol Chem. 1995 May 19;270(20):11955–11961. doi: 10.1074/jbc.270.20.11955. [DOI] [PubMed] [Google Scholar]