Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):429–436. doi: 10.1042/BJ20021520

3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin.

Wei Li 1, Xi-Ming Yuan 1, Svetlana Ivanova 1, Kevin J Tracey 1, John W Eaton 1, Ulf T Brunk 1
PMCID: PMC1223282  PMID: 12513695

Abstract

Cytotoxic polyamine-derived amino aldehydes, formed during cerebral ischaemia, damage adjacent tissue (the so-called 'penumbra') not subject to the initial ischaemic insult. One such product is 3-aminopropanal (3-AP), a potent cytotoxin that accumulates in ischaemic brain, although the precise mechanisms responsible for its formation are still unclear. More relevant to the present investigations, the mechanisms by which such a small aldehydic compound might be cytotoxic are also not known, but we hypothesized that 3-AP, having the structure of a weak lysosomotropic base, might concentrate within lysosomes, making these organelles a probable focus of initial toxicity. Indeed, 3-AP leads to lysosomal rupture of D384 glioma cells, a process which clearly precedes caspase activation and apoptotic cell death. Immunohistochemistry reveals that 3-AP concentrates in the lysosomal compartment and prevention of this accumulation by the lysosomotropic base ammonia, NH(3), protects against 3-AP cytotoxicity by increasing lysosomal pH. A thiol compound, N-(2-mercaptopropionyl)glycine, reacts with and neutralizes 3-AP and significantly inhibits cytoxocity. Both amino and aldehyde functions of 3-AP are necessary for toxicity: the amino group confers lysosomotropism and the aldehyde is important for additional, presently unknown, reactions. We conclude that 3-AP exerts its toxic effects by accumulating intralysosomally, causing rupture of these organelles and releasing lysosomal enzymes which initiate caspase activation and apoptosis (or necrosis if the lysosomal rupture is extensive). These results may have implications for the development of new therapeutics designed to lessen secondary damage arising from focal cerebral ischaemia.

Full Text

The Full Text of this article is available as a PDF (282.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolkenius F. N., Bey P., Seiler N. Specific inhibition of polyamine oxidase in vivo is a method for the elucidation of its physiological role. Biochim Biophys Acta. 1985 Jan 28;838(1):69–76. doi: 10.1016/0304-4165(85)90251-x. [DOI] [PubMed] [Google Scholar]
  2. Brunk U. T., Dalen H., Roberg K., Hellquist H. B. Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med. 1997;23(4):616–626. doi: 10.1016/s0891-5849(97)00007-5. [DOI] [PubMed] [Google Scholar]
  3. Brunk U. T., Neuzil J., Eaton J. W. Lysosomal involvement in apoptosis. Redox Rep. 2001;6(2):91–97. doi: 10.1179/135100001101536094. [DOI] [PubMed] [Google Scholar]
  4. Dai H., Kramer D. L., Yang C., Murti K. G., Porter C. W., Cleveland J. L. The polyamine oxidase inhibitor MDL-72,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res. 1999 Oct 1;59(19):4944–4954. [PubMed] [Google Scholar]
  5. Doğan A., Rao A. M., Baskaya M. K., Hatcher J., Temiz C., Rao V. L., Dempsey R. J. Contribution of polyamine oxidase to brain injury after trauma. J Neurosurg. 1999 Jun;90(6):1078–1082. doi: 10.3171/jns.1999.90.6.1078. [DOI] [PubMed] [Google Scholar]
  6. Feng Y., Forgac M. A novel mechanism for regulation of vacuolar acidification. J Biol Chem. 1992 Oct 5;267(28):19769–19772. [PubMed] [Google Scholar]
  7. Ferrante A., Rzepczyk C. M., Saul A. J. Polyamine oxidase-mediated trypanosome killing: the role of hydrogen peroxide and aldehydes. J Immunol. 1984 Oct;133(4):2157–2162. [PubMed] [Google Scholar]
  8. Forgac M. Structure and function of vacuolar class of ATP-driven proton pumps. Physiol Rev. 1989 Jul;69(3):765–796. doi: 10.1152/physrev.1989.69.3.765. [DOI] [PubMed] [Google Scholar]
  9. Guicciardi M. E., Deussing J., Miyoshi H., Bronk S. F., Svingen P. A., Peters C., Kaufmann S. H., Gores G. J. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest. 2000 Nov;106(9):1127–1137. doi: 10.1172/JCI9914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higuchi Y., Matsukawa S. Active oxygen-mediated chromosomal 1-2 Mbp giant DNA fragmentation into internucleosomal DNA fragmentation in apoptosis of glioma cells induced by glutamate. Free Radic Biol Med. 1998 Feb;24(3):418–426. doi: 10.1016/s0891-5849(97)00273-6. [DOI] [PubMed] [Google Scholar]
  11. Honegger C. G., Langemann H., Krenger W., Kempf A. Liquid chromatographic determination of common water-soluble antioxidants in biological samples. J Chromatogr. 1989 Feb 24;487(2):463–468. doi: 10.1016/s0378-4347(00)83056-x. [DOI] [PubMed] [Google Scholar]
  12. Ishisaka R., Utsumi T., Kanno T., Arita K., Katunuma N., Akiyama J., Utsumi K. Participation of a cathepsin L-type protease in the activation of caspase-3. Cell Struct Funct. 1999 Dec;24(6):465–470. doi: 10.1247/csf.24.465. [DOI] [PubMed] [Google Scholar]
  13. Ivanova S., Botchkina G. I., Al-Abed Y., Meistrell M., 3rd, Batliwalla F., Dubinsky J. M., Iadecola C., Wang H., Gregersen P. K., Eaton J. W. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death. J Exp Med. 1998 Jul 20;188(2):327–340. doi: 10.1084/jem.188.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ivanova Svetlana, Batliwalla Franak, Mocco J., Kiss Szilard, Huang Judy, Mack William, Coon Alexander, Eaton John W., Al-Abed Yousef, Gregersen Peter K. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc Natl Acad Sci U S A. 2002 Apr 9;99(8):5579–5584. doi: 10.1073/pnas.082609299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kehrer J. P., Biswal S. S. The molecular effects of acrolein. Toxicol Sci. 2000 Sep;57(1):6–15. doi: 10.1093/toxsci/57.1.6. [DOI] [PubMed] [Google Scholar]
  16. Kågedal K., Zhao M., Svensson I., Brunk U. T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J. 2001 Oct 15;359(Pt 2):335–343. doi: 10.1042/0264-6021:3590335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leist M., Jättelä M. Triggering of apoptosis by cathepsins. Cell Death Differ. 2001 Apr;8(4):324–326. doi: 10.1038/sj.cdd.4400859. [DOI] [PubMed] [Google Scholar]
  18. Li W., Dalen H., Eaton J. W., Yuan X. M. Apoptotic death of inflammatory cells in human atheroma. Arterioscler Thromb Vasc Biol. 2001 Jul;21(7):1124–1130. doi: 10.1161/hq0701.092145. [DOI] [PubMed] [Google Scholar]
  19. Li W., Yuan X., Nordgren G., Dalen H., Dubowchik G. M., Firestone R. A., Brunk U. T. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 2000 Mar 17;470(1):35–39. doi: 10.1016/s0014-5793(00)01286-2. [DOI] [PubMed] [Google Scholar]
  20. Love S., Barber R., Wilcock G. K. Apoptosis and expression of DNA repair proteins in ischaemic brain injury in man. Neuroreport. 1998 Apr 20;9(6):955–959. doi: 10.1097/00001756-199804200-00001. [DOI] [PubMed] [Google Scholar]
  21. Martin D. P., Schmidt R. E., DiStefano P. S., Lowry O. H., Carter J. G., Johnson E. M., Jr Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J Cell Biol. 1988 Mar;106(3):829–844. doi: 10.1083/jcb.106.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roberg K., Johansson U., Ollinger K. Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med. 1999 Dec;27(11-12):1228–1237. doi: 10.1016/s0891-5849(99)00146-x. [DOI] [PubMed] [Google Scholar]
  24. Roberts L. R., Kurosawa H., Bronk S. F., Fesmier P. J., Agellon L. B., Leung W. Y., Mao F., Gores G. J. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology. 1997 Nov;113(5):1714–1726. doi: 10.1053/gast.1997.v113.pm9352877. [DOI] [PubMed] [Google Scholar]
  25. Robertson G. S., Crocker S. J., Nicholson D. W., Schulz J. B. Neuroprotection by the inhibition of apoptosis. Brain Pathol. 2000 Apr;10(2):283–292. doi: 10.1111/j.1750-3639.2000.tb00262.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  27. Seiler N., Bolkenius F. N. Polyamine reutilization and turnover in brain. Neurochem Res. 1985 Apr;10(4):529–544. doi: 10.1007/BF00964656. [DOI] [PubMed] [Google Scholar]
  28. Seiler N., Duranton B., Gossé F., Raul F. Spermine cytotoxicity to human colon carcinoma-derived cells (CaCo-2). Cell Biol Toxicol. 2000;16(2):117–130. doi: 10.1023/a:1007642126765. [DOI] [PubMed] [Google Scholar]
  29. Seiler N. Oxidation of polyamines and brain injury. Neurochem Res. 2000 Apr;25(4):471–490. doi: 10.1023/a:1007508008731. [DOI] [PubMed] [Google Scholar]
  30. Seiler N. Polyamine oxidase, properties and functions. Prog Brain Res. 1995;106:333–344. doi: 10.1016/s0079-6123(08)61229-7. [DOI] [PubMed] [Google Scholar]
  31. Sharmin S., Sakata K., Kashiwagi K., Ueda S., Iwasaki S., Shirahata A., Igarashi K. Polyamine cytotoxicity in the presence of bovine serum amine oxidase. Biochem Biophys Res Commun. 2001 Mar 23;282(1):228–235. doi: 10.1006/bbrc.2001.4569. [DOI] [PubMed] [Google Scholar]
  32. Stoka V., Turk B., Schendel S. L., Kim T. H., Cirman T., Snipas S. J., Ellerby L. M., Bredesen D., Freeze H., Abrahamson M. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem. 2000 Nov 9;276(5):3149–3157. doi: 10.1074/jbc.M008944200. [DOI] [PubMed] [Google Scholar]
  33. Thioudellet C., Oster T., Leroy P., Nicolas A., Wellman M. Influence of sample preparation on cellular glutathione recovery from adherent cells in culture. Cell Biol Toxicol. 1995 Apr;11(2):103–111. doi: 10.1007/BF00767495. [DOI] [PubMed] [Google Scholar]
  34. Tsuchiya K., Kohda Y., Yoshida M., Zhao L., Ueno T., Yamashita J., Yoshioka T., Kominami E., Yamashima T. Postictal blockade of ischemic hippocampal neuronal death in primates using selective cathepsin inhibitors. Exp Neurol. 1999 Feb;155(2):187–194. doi: 10.1006/exnr.1998.6988. [DOI] [PubMed] [Google Scholar]
  35. Yao J., Zhang G. J. Loss of lysosomal integrity caused by the decrease of proton translocation in methylene blue-mediated photosensitization. Biochim Biophys Acta. 1996 Oct 2;1284(1):35–40. doi: 10.1016/0005-2736(96)00105-8. [DOI] [PubMed] [Google Scholar]
  36. Zang Y., Beard R. L., Chandraratna R. A., Kang J. X. Evidence of a lysosomal pathway for apoptosis induced by the synthetic retinoid CD437 in human leukemia HL-60 cells. Cell Death Differ. 2001 May;8(5):477–485. doi: 10.1038/sj.cdd.4400843. [DOI] [PubMed] [Google Scholar]
  37. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES