Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):331–340. doi: 10.1042/BJ20021675

A proteomic approach to the identification of heterogeneous nuclear ribonucleoproteins as a new family of poly(ADP-ribose)-binding proteins.

Jean-Philippe Gagné 1, Joanna M Hunter 1, Benoît Labrecque 1, Benoît Chabot 1, Guy G Poirier 1
PMCID: PMC1223283  PMID: 12517304

Abstract

A new class of poly(ADP-ribose) (pADPr)-binding proteins, heterogeneous nuclear ribonucleoproteins (hnRNPs), has been identified by a proteomic approach using matrix-assisted laser-desorption-ionization time-of-flight ('MALDI-TOF') MS. Liquid-phase isoelectric focusing with a Rotofor cell (Bio-Rad) allowed pre-fractionation of proteins extracted from HeLa cells. Rotofor protein fractions were further separated by SDS/PAGE and then transferred to a PVDF membrane. pADPr-binding proteins were analysed by autoradiography of the protein blot after incubation with (32)P-labelled automodified pADPr polymerase-1 (PARP-1). Peptide mass fingerprinting of selected bands identified the most abundant pADPr-binding proteins as hnRNPs, a family of proteins that bind pre-mRNA into functional complexes involved in mRNA maturation and transport to the cytoplasm. Sequence homology database searching against a previously reported pADPr-binding sequence motif revealed that the hnRNPs contain a putative pADPr-binding sequence pattern [Pleschke, Kleczkowska, Strohm and Althaus (2000) J. Biol. Chem. 275, 40974-40980]. pADPr-binding assays performed with synthetic peptides by the dot-blot technique and with nitrocellulose-transferred recombinant hnRNPs confirmed the pADPr-binding protein identification and the specificity of the interaction. These results could establish a link between increased levels of pADPr in DNA damaged cells and the modified protein expression pattern resulting from altered mRNA trafficking.

Full Text

The Full Text of this article is available as a PDF (301.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affar E. B., Duriez P. J., Shah R. G., Winstall E., Germain M., Boucher C., Bourassa S., Kirkland J. B., Poirier G. G. Immunological determination and size characterization of poly(ADP-ribose) synthesized in vitro and in vivo. Biochim Biophys Acta. 1999 Aug 5;1428(2-3):137–146. doi: 10.1016/s0304-4165(99)00054-9. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Gonzalez R., Spring H., Müller M., Bürkle A. Selective loss of poly(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J Biol Chem. 1999 Nov 5;274(45):32122–32126. doi: 10.1074/jbc.274.45.32122. [DOI] [PubMed] [Google Scholar]
  3. Ben-David Y., Bani M. R., Chabot B., De Koven A., Bernstein A. Retroviral insertions downstream of the heterogeneous nuclear ribonucleoprotein A1 gene in erythroleukemia cells: evidence that A1 is not essential for cell growth. Mol Cell Biol. 1992 Oct;12(10):4449–4455. doi: 10.1128/mcb.12.10.4449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M., Piñol-Roma S., Staknis D., Dreyfuss G., Reed R. Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol. 1992 Jul;12(7):3165–3175. doi: 10.1128/mcb.12.7.3165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brochu G., Duchaine C., Thibeault L., Lagueux J., Shah G. M., Poirier G. G. Mode of action of poly(ADP-ribose) glycohydrolase. Biochim Biophys Acta. 1994 Oct 18;1219(2):342–350. doi: 10.1016/0167-4781(94)90058-2. [DOI] [PubMed] [Google Scholar]
  6. Brockstedt E., Rickers A., Kostka S., Laubersheimer A., Dörken B., Wittmann-Liebold B., Bommert K., Otto A. Identification of apoptosis-associated proteins in a human Burkitt lymphoma cell line. Cleavage of heterogeneous nuclear ribonucleoprotein A1 by caspase 3. J Biol Chem. 1998 Oct 23;273(43):28057–28064. doi: 10.1074/jbc.273.43.28057. [DOI] [PubMed] [Google Scholar]
  7. Casas-Finet J. R., Smith J. D., Jr, Kumar A., Kim J. G., Wilson S. H., Karpel R. L. Mammalian heterogeneous ribonucleoprotein A1 and its constituent domains. Nucleic acid interaction, structural stability and self-association. J Mol Biol. 1993 Feb 20;229(4):873–889. doi: 10.1006/jmbi.1993.1093. [DOI] [PubMed] [Google Scholar]
  8. Combet C., Blanchet C., Geourjon C., Deléage G. NPS@: network protein sequence analysis. Trends Biochem Sci. 2000 Mar;25(3):147–150. doi: 10.1016/s0968-0004(99)01540-6. [DOI] [PubMed] [Google Scholar]
  9. D'Amours D., Desnoyers S., D'Silva I., Poirier G. G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J. 1999 Sep 1;342(Pt 2):249–268. [PMC free article] [PubMed] [Google Scholar]
  10. Ford Lance P., Wright Woodring E., Shay Jerry W. A model for heterogeneous nuclear ribonucleoproteins in telomere and telomerase regulation. Oncogene. 2002 Jan 21;21(4):580–583. doi: 10.1038/sj.onc.1205086. [DOI] [PubMed] [Google Scholar]
  11. Germain M., Affar E. B., D'Amours D., Dixit V. M., Salvesen G. S., Poirier G. G. Cleavage of automodified poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem. 1999 Oct 1;274(40):28379–28384. doi: 10.1074/jbc.274.40.28379. [DOI] [PubMed] [Google Scholar]
  12. Guillonneau F., Guieysse A. L., Le Caer J. P., Rossier J., Praseuth D. Selection and identification of proteins bound to DNA triple-helical structures by combination of 2D-electrophoresis and MALDI-TOF mass spectrometry. Nucleic Acids Res. 2001 Jun 1;29(11):2427–2436. doi: 10.1093/nar/29.11.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hay D. C., Kemp G. D., Dargemont C., Hay R. T. Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription. Mol Cell Biol. 2001 May;21(10):3482–3490. doi: 10.1128/MCB.21.10.3482-3490.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Izaurralde E., Jarmolowski A., Beisel C., Mattaj I. W., Dreyfuss G., Fischer U. A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export. J Cell Biol. 1997 Apr 7;137(1):27–35. doi: 10.1083/jcb.137.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Juarez-Salinas H., Sims J. L., Jacobson M. K. Poly(ADP-ribose) levels in carcinogen-treated cells. Nature. 1979 Dec 13;282(5740):740–741. doi: 10.1038/282740a0. [DOI] [PubMed] [Google Scholar]
  16. Krecic A. M., Swanson M. S. hnRNP complexes: composition, structure, and function. Curr Opin Cell Biol. 1999 Jun;11(3):363–371. doi: 10.1016/S0955-0674(99)80051-9. [DOI] [PubMed] [Google Scholar]
  17. LaBranche H., Dupuis S., Ben-David Y., Bani M. R., Wellinger R. J., Chabot B. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat Genet. 1998 Jun;19(2):199–202. doi: 10.1038/575. [DOI] [PubMed] [Google Scholar]
  18. Lindahl T., Satoh M. S., Poirier G. G., Klungland A. Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci. 1995 Oct;20(10):405–411. doi: 10.1016/s0968-0004(00)89089-1. [DOI] [PubMed] [Google Scholar]
  19. Malanga M., Pleschke J. M., Kleczkowska H. E., Althaus F. R. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem. 1998 May 8;273(19):11839–11843. doi: 10.1074/jbc.273.19.11839. [DOI] [PubMed] [Google Scholar]
  20. Mayeda A., Munroe S. H., Cáceres J. F., Krainer A. R. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins. EMBO J. 1994 Nov 15;13(22):5483–5495. doi: 10.1002/j.1460-2075.1994.tb06883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Michael W. M., Choi M., Dreyfuss G. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell. 1995 Nov 3;83(3):415–422. doi: 10.1016/0092-8674(95)90119-1. [DOI] [PubMed] [Google Scholar]
  22. Michael W. M., Siomi H., Choi M., Piñol-Roma S., Nakielny S., Liu Q., Dreyfuss G. Signal sequences that target nuclear import and nuclear export of pre-mRNA-binding proteins. Cold Spring Harb Symp Quant Biol. 1995;60:663–668. doi: 10.1101/sqb.1995.060.01.071. [DOI] [PubMed] [Google Scholar]
  23. Mortz E., Krogh T. N., Vorum H., Görg A. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics. 2001 Nov;1(11):1359–1363. doi: 10.1002/1615-9861(200111)1:11<1359::AID-PROT1359>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  24. Ménard L., Poirier G. G. Rapid assay of poly(ADP-ribose) glycohydrolase. Biochem Cell Biol. 1987 Jul;65(7):668–673. doi: 10.1139/o87-088. [DOI] [PubMed] [Google Scholar]
  25. Nozaki T., Masutani M., Akagawa T., Sugimura T., Esumi H. Non-covalent interaction between poly(ADP-ribose) and cellular proteins: an application of a poly(ADP-ribose)-western blotting method to detect poly(ADP-ribose) binding on protein-blotted filter. Biochem Biophys Res Commun. 1994 Jan 14;198(1):45–51. doi: 10.1006/bbrc.1994.1007. [DOI] [PubMed] [Google Scholar]
  26. Ogata N., Ueda K., Kawaichi M., Hayaishi O. Poly(ADP-ribose) synthetase, a main acceptor of poly(ADP-ribose) in isolated nuclei. J Biol Chem. 1981 May 10;256(9):4135–4137. [PubMed] [Google Scholar]
  27. Panda Satchidananda, Poirier Guy G., Kay Steve A. tej defines a role for poly(ADP-ribosyl)ation in establishing period length of the arabidopsis circadian oscillator. Dev Cell. 2002 Jul;3(1):51–61. doi: 10.1016/s1534-5807(02)00200-9. [DOI] [PubMed] [Google Scholar]
  28. Panzeter P. L., Realini C. A., Althaus F. R. Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry. 1992 Feb 11;31(5):1379–1385. doi: 10.1021/bi00120a014. [DOI] [PubMed] [Google Scholar]
  29. Panzeter P. L., Zweifel B., Malanga M., Waser S. H., Richard M., Althaus F. R. Targeting of histone tails by poly(ADP-ribose). J Biol Chem. 1993 Aug 25;268(24):17662–17664. [PubMed] [Google Scholar]
  30. Piñol-Roma S., Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature. 1992 Feb 20;355(6362):730–732. doi: 10.1038/355730a0. [DOI] [PubMed] [Google Scholar]
  31. Pleschke J. M., Kleczkowska H. E., Strohm M., Althaus F. R. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem. 2000 Dec 29;275(52):40974–40980. doi: 10.1074/jbc.M006520200. [DOI] [PubMed] [Google Scholar]
  32. Prasad S., Walent J., Dritschilo A. ADP-ribosylation of heterogeneous ribonucleoproteins in HeLa cells. Biochem Biophys Res Commun. 1994 Oct 28;204(2):772–779. doi: 10.1006/bbrc.1994.2526. [DOI] [PubMed] [Google Scholar]
  33. Shah G. M., Poirier D., Duchaine C., Brochu G., Desnoyers S., Lagueux J., Verreault A., Hoflack J. C., Kirkland J. B., Poirier G. G. Methods for biochemical study of poly(ADP-ribose) metabolism in vitro and in vivo. Anal Biochem. 1995 May 1;227(1):1–13. doi: 10.1006/abio.1995.1245. [DOI] [PubMed] [Google Scholar]
  34. Thiede B., Dimmler C., Siejak F., Rudel T. Predominant identification of RNA-binding proteins in Fas-induced apoptosis by proteome analysis. J Biol Chem. 2001 May 14;276(28):26044–26050. doi: 10.1074/jbc.M101062200. [DOI] [PubMed] [Google Scholar]
  35. Thiede Bernd, Siejak Frank, Dimmler Christiane, Rudel Thomas. Prediction of translocation and cleavage of heterogeneous ribonuclear proteins and Rho guanine nucleotide dissociation inhibitor 2 during apoptosis by subcellular proteome analysis. Proteomics. 2002 Aug;2(8):996–1006. doi: 10.1002/1615-9861(200208)2:8<996::AID-PROT996>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  36. Vitali Jacqueline, Ding Jianzhong, Jiang Jianzhong, Zhang Ying, Krainer Adrian R., Xu Rui-Ming. Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 2002 Apr 1;30(7):1531–1538. doi: 10.1093/nar/30.7.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wesierska-Gadek J., Schmid G. Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein. Cell Mol Biol Lett. 2001;6(2):117–140. [PubMed] [Google Scholar]
  38. Yu Seong-Woon, Wang Hongmin, Poitras Marc F., Coombs Carmen, Bowers William J., Federoff Howard J., Poirier Guy G., Dawson Ted M., Dawson Valina L. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002 Jul 12;297(5579):259–263. doi: 10.1126/science.1072221. [DOI] [PubMed] [Google Scholar]
  39. Zahradka P., Ebisuzaki K. Poly(ADP-ribose) polymerase is a zinc metalloenzyme. Eur J Biochem. 1984 Aug 1;142(3):503–509. doi: 10.1111/j.1432-1033.1984.tb08314.x. [DOI] [PubMed] [Google Scholar]
  40. de Murcia J. M., Niedergang C., Trucco C., Ricoul M., Dutrillaux B., Mark M., Oliver F. J., Masson M., Dierich A., LeMeur M. Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7303–7307. doi: 10.1073/pnas.94.14.7303. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES