Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):473–483. doi: 10.1042/BJ20020875

Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications.

Mariarita Bertoldi 1, Barbara Cellini 1, Alessandro Paiardini 1, Martino Di Salvo 1, Carla Borri Voltattorni 1
PMCID: PMC1223284  PMID: 12519070

Abstract

To obtain information on the reaction specificity of cystalysin from the spirochaete bacterium Treponema denticola, the interaction with L- and D-alanine has been investigated. Binding of both alanine enantiomers leads to the appearance of an external aldimine absorbing at 429 nm and of a band absorbing at 498 nm, indicative of a quinonoid species. Racemization and transamination reactions were observed to occur with both alanine isomers as substrates. The steady-state kinetic parameters for racemization, k (cat) and K (m), for L-alanine are 1.05+/-0.03 s(-1) and 10+/-1 mM respectively, whereas those for D-alanine are 1.4+/-0.1 s(-1) and 10+/-1 mM. During the reaction of cystalysin with L- or D-alanine, a time-dependent loss of beta-elimination activity occurs concomitantly with the conversion of the pyridoxal 5'-phosphate (PLP) coenzyme into pyridoxamine 5'-phosphate (PMP). The catalytic efficiency of the half-transamination of L-alanine is found to be 5.3x10(-5) mM(-1) x s(-1), 5-fold higher when compared with that of D-alanine. The partition ratio between racemization and half-transamination reactions is 2.3x10(3) for L-alanine and 1.4x10(4) for D-alanine. The pH dependence of the kinetic parameters for both the reactions shows that the enzyme possesses a single ionizing residue with p K values of 6.5-6.6, which must be unprotonated for catalysis. Addition of pyruvate converts the PMP form of the enzyme back into the PLP form and causes the concomitant recovery of beta-elimination activity. In contrast with other PLP enzymes studied so far, but similar to alanine racemases, the apoform of the enzyme abstracted tritium from C4' of both (4' S)- and (4' R)-[4'-(3)H]PMP in the presence of pyruvate. Together with molecular modelling of the putative binding sites of L- and D-alanine at the active site of the enzyme, the implications of these studies for the mechanisms of the side reactions catalysed by cystalysin are discussed.

Full Text

The Full Text of this article is available as a PDF (261.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badet B., Roise D., Walsh C. T. Inactivation of the dadB Salmonella typhimurium alanine racemase by D and L isomers of beta-substituted alanines: kinetics, stoichiometry, active site peptide sequencing, and reaction mechanism. Biochemistry. 1984 Oct 23;23(22):5188–5194. doi: 10.1021/bi00317a016. [DOI] [PubMed] [Google Scholar]
  2. Bertoldi M., Borri Voltattorni C. Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Biochem J. 2000 Dec 1;352(Pt 2):533–538. [PMC free article] [PubMed] [Google Scholar]
  3. Bertoldi Mariarita, Cellini Barbara, Clausen Tim, Voltattorni Carla Borri. Spectroscopic and kinetic analyses reveal the pyridoxal 5'-phosphate binding mode and the catalytic features of Treponema denticola cystalysin. Biochemistry. 2002 Jul 23;41(29):9153–9164. doi: 10.1021/bi025649q. [DOI] [PubMed] [Google Scholar]
  4. Cardinale G. J., Abeles R. H. Purification and mechanism of action of proline racemase. Biochemistry. 1968 Nov;7(11):3970–3978. doi: 10.1021/bi00851a026. [DOI] [PubMed] [Google Scholar]
  5. Chen H., Phillips R. S. Binding of phenol and analogues to alanine complexes of tyrosine phenol-lyase from Citrobacter freundii: implications for the mechanisms of alpha,beta-elimination and alanine racemization. Biochemistry. 1993 Nov 2;32(43):11591–11599. doi: 10.1021/bi00094a016. [DOI] [PubMed] [Google Scholar]
  6. Chu L., Ebersole J. L., Kurzban G. P., Holt S. C. Cystalysin, a 46-kilodalton cysteine desulfhydrase from Treponema denticola, with hemolytic and hemoxidative activities. Infect Immun. 1997 Aug;65(8):3231–3238. doi: 10.1128/iai.65.8.3231-3238.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Contestabile R., Paiardini A., Pascarella S., di Salvo M. L., D'Aguanno S., Bossa F. l-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. A subgroup of strictly related enzymes specialized for different functions. Eur J Biochem. 2001 Dec;268(24):6508–6525. doi: 10.1046/j.0014-2956.2001.02606.x. [DOI] [PubMed] [Google Scholar]
  8. Demidkina T. V., Myagkikh I. V., Azhayev A. V. Transamination catalysed by tyrosine phenol-lyase from Citrobacter intermedius. Eur J Biochem. 1987 Dec 30;170(1-2):311–316. doi: 10.1111/j.1432-1033.1987.tb13701.x. [DOI] [PubMed] [Google Scholar]
  9. Dunathan H. C. Stereochemical aspects of pyridoxal phosphate catalysis. Adv Enzymol Relat Areas Mol Biol. 1971;35:79–134. doi: 10.1002/9780470122808.ch3. [DOI] [PubMed] [Google Scholar]
  10. Esaki N., Walsh C. T. Biosynthetic alanine racemase of Salmonella typhimurium: purification and characterization of the enzyme encoded by the alr gene. Biochemistry. 1986 Jun 3;25(11):3261–3267. doi: 10.1021/bi00359a027. [DOI] [PubMed] [Google Scholar]
  11. Feng L., Geck M. K., Eliot A. C., Kirsch J. F. Aminotransferase activity and bioinformatic analysis of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry. 2000 Dec 12;39(49):15242–15249. doi: 10.1021/bi002092a. [DOI] [PubMed] [Google Scholar]
  12. Glavas S., Tanner M. E. Catalytic acid/base residues of glutamate racemase. Biochemistry. 1999 Mar 30;38(13):4106–4113. doi: 10.1021/bi982663n. [DOI] [PubMed] [Google Scholar]
  13. Gloss L. M., Kirsch J. F. Decreasing the basicity of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with gamma-thialysine. Biochemistry. 1995 Mar 28;34(12):3990–3998. doi: 10.1021/bi00012a017. [DOI] [PubMed] [Google Scholar]
  14. Grishin N. V., Phillips M. A., Goldsmith E. J. Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci. 1995 Jul;4(7):1291–1304. doi: 10.1002/pro.5560040705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jansonius J. N. Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol. 1998 Dec;8(6):759–769. doi: 10.1016/s0959-440x(98)80096-1. [DOI] [PubMed] [Google Scholar]
  16. Kochhar S., Christen P. Mechanism of racemization of amino acids by aspartate aminotransferase. Eur J Biochem. 1992 Feb 1;203(3):563–569. doi: 10.1111/j.1432-1033.1992.tb16584.x. [DOI] [PubMed] [Google Scholar]
  17. Krupka H. I., Huber R., Holt S. C., Clausen T. Crystal structure of cystalysin from Treponema denticola: a pyridoxal 5'-phosphate-dependent protein acting as a haemolytic enzyme. EMBO J. 2000 Jul 3;19(13):3168–3178. doi: 10.1093/emboj/19.13.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kurokawa Y., Watanabe A., Yoshimura T., Esaki N., Soda K. Transamination as a side-reaction catalyzed by alanine racemase of Bacillus stearothermophilus. J Biochem. 1998 Dec 1;124(6):1163–1169. doi: 10.1093/oxfordjournals.jbchem.a022234. [DOI] [PubMed] [Google Scholar]
  19. Lim Y. H., Yoshimura T., Kurokawa Y., Esaki N., Soda K. Nonstereospecific transamination catalyzed by pyridoxal phosphate-dependent amino acid racemases of broad substrate specificity. J Biol Chem. 1998 Feb 13;273(7):4001–4005. doi: 10.1074/jbc.273.7.4001. [DOI] [PubMed] [Google Scholar]
  20. Mehta P. K., Christen P. The molecular evolution of pyridoxal-5'-phosphate-dependent enzymes. Adv Enzymol Relat Areas Mol Biol. 2000;74:129–184. doi: 10.1002/9780470123201.ch4. [DOI] [PubMed] [Google Scholar]
  21. Miles E. W., Phillips R. S., Yeh H. J., Cohen L. A. Isomerization of (3S)-2,3-dihydro-5-fluoro-L-tryptophan and of 5-fluoro-L-tryptophan catalyzed by tryptophan synthase: studies using fluorine-19 nuclear magnetic resonance and difference spectroscopy. Biochemistry. 1986 Jul 29;25(15):4240–4249. doi: 10.1021/bi00363a011. [DOI] [PubMed] [Google Scholar]
  22. Ondrechen M. J., Briggs J. M., McCammon J. A. A model for enzyme-substrate interaction in alanine racemase. J Am Chem Soc. 2001 Mar 28;123(12):2830–2834. doi: 10.1021/ja0029679. [DOI] [PubMed] [Google Scholar]
  23. Panizzutti R., De Miranda J., Ribeiro C. S., Engelender S., Wolosker H. A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase. Proc Natl Acad Sci U S A. 2001 Apr 17;98(9):5294–5299. doi: 10.1073/pnas.091002298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schafer S. L., Barrett W. C., Kallarakal A. T., Mitra B., Kozarich J. W., Gerlt J. A., Clifton J. G., Petsko G. A., Kenyon G. L. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant. Biochemistry. 1996 May 7;35(18):5662–5669. doi: 10.1021/bi960174m. [DOI] [PubMed] [Google Scholar]
  25. Shaw J. P., Petsko G. A., Ringe D. Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-A resolution. Biochemistry. 1997 Feb 11;36(6):1329–1342. doi: 10.1021/bi961856c. [DOI] [PubMed] [Google Scholar]
  26. Shostak K., Schirch V. Serine hydroxymethyltransferase: mechanism of the racemization and transamination of D- and L-alanine. Biochemistry. 1988 Oct 18;27(21):8007–8014. doi: 10.1021/bi00421a006. [DOI] [PubMed] [Google Scholar]
  27. Sun S., Toney M. D. Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase. Biochemistry. 1999 Mar 30;38(13):4058–4065. doi: 10.1021/bi982924t. [DOI] [PubMed] [Google Scholar]
  28. Trivedi Vishal, Gupta Amrita, Jala Venkatakrishna R., Saravanan P., Rao G. S. Jagannatha, Rao N. Appaji, Savithri Handanahal S., Subramanya Hosahalli S. Crystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism. J Biol Chem. 2002 Feb 27;277(19):17161–17169. doi: 10.1074/jbc.M111976200. [DOI] [PubMed] [Google Scholar]
  29. Watanabe A., Kurokawa Y., Yoshimura T., Esaki N. Role of tyrosine 265 of alanine racemase from Bacillus stearothermophilus. J Biochem. 1999 Jun;125(6):987–990. doi: 10.1093/oxfordjournals.jbchem.a022406. [DOI] [PubMed] [Google Scholar]
  30. Watanabe A., Kurokawa Y., Yoshimura T., Kurihara T., Soda K., Esaki N., Watababe A. Role of lysine 39 of alanine racemase from Bacillus stearothermophilus that binds pyridoxal 5'-phosphate. Chemical rescue studies of Lys39 --> Ala mutant. J Biol Chem. 1999 Feb 12;274(7):4189–4194. doi: 10.1074/jbc.274.7.4189. [DOI] [PubMed] [Google Scholar]
  31. Watanabe A., Yoshimura T., Mikami B., Esaki N. Tyrosine 265 of alanine racemase serves as a base abstracting alpha-hydrogen from L-alanine: the counterpart residue to lysine 39 specific to D-alanine. J Biochem. 1999 Oct;126(4):781–786. doi: 10.1093/oxfordjournals.jbchem.a022517. [DOI] [PubMed] [Google Scholar]
  32. Watanabe Akira, Yoshimura Tohru, Mikami Bunzo, Hayashi Hideyuki, Kagamiyama Hiroyuki, Esaki Nobuyoshi. Reaction mechanism of alanine racemase from Bacillus stearothermophilus: x-ray crystallographic studies of the enzyme bound with N-(5'-phosphopyridoxyl)alanine. J Biol Chem. 2002 Mar 8;277(21):19166–19172. doi: 10.1074/jbc.M201615200. [DOI] [PubMed] [Google Scholar]
  33. Yang E. S., Schirch V. Tight binding of pyridoxal 5'-phosphate to recombinant Escherichia coli pyridoxine 5'-phosphate oxidase. Arch Biochem Biophys. 2000 May 1;377(1):109–114. doi: 10.1006/abbi.2000.1737. [DOI] [PubMed] [Google Scholar]
  34. di Salvo Martino L., Ko Tzu-Ping, Musayev Faik N., Raboni Samanta, Schirch Verne, Safo Martin K. Active site structure and stereospecificity of Escherichia coli pyridoxine-5'-phosphate oxidase. J Mol Biol. 2002 Jan 18;315(3):385–397. doi: 10.1006/jmbi.2001.5254. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES