Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):541–548. doi: 10.1042/BJ20021691

Aorsin, a novel serine proteinase with trypsin-like specificity at acidic pH.

Byung Rho Lee 1, Masato Furukawa 1, Koichiro Yamashita 1, Yurie Kanasugi 1, Choko Kawabata 1, Kenichi Hirano 1, Kenichi Ando 1, Eiji Ichishima 1
PMCID: PMC1223285  PMID: 12519073

Abstract

A proteinase that hydrolyses clupeine and salmine at acidic pH, called aorsin, was found in the fungus Aspergillus oryzae. Purified aorsin also hydrolysed benzyloxycarbonyl-Arg-Arg-4-methylcoumaryl-7-amide optimally at pH 4.0. The specificity of aorsin appeared to require a basic residue at the P(1) position and to prefer paired basic residues. Aorsin activated plasminogen and converted trypsinogen to trypsin. The trypsin-like activity was inhibited strongly by antipain or leupeptin, but was not inhibited by any other standard inhibitors of peptidases. To identify the catalytic residues of aorsin, a gene was cloned and an expression system was established. The predicted mature protein of aorsin was 35% identical with the classical late-infantile neuronal ceroid lipofuscinosis protein CLN2p and was 24% identical with Pseudomonas serine-carboxyl proteinase, both of which are pepstatin-insensitive carboxyl proteinases. Several putative catalytic residues were mutated. The k (cat)/ K(m) values of the mutant enzymes Glu(86)-->Gln, Asp(211)-->Asn and Ser(354)-->Thr were 3-4 orders of magnitude lower and Asp(90)-->Asn was 21-fold lower than that of wild-type aorsin, indicating that the positions are important for catalysis. Aorsin is another of the S53 family serine-carboxyl proteinases that are not inhibited by pepstatin.

Full Text

The Full Text of this article is available as a PDF (254.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Comellas-Bigler Mireia, Fuentes-Prior Pablo, Maskos Klaus, Huber Robert, Oyama Hiroshi, Uchida Kenichi, Dunn Ben M., Oda Kohei, Bode Wolfram. The 1.4 a crystal structure of kumamolysin: a thermostable serine-carboxyl-type proteinase. Structure. 2002 Jun;10(6):865–876. doi: 10.1016/s0969-2126(02)00772-4. [DOI] [PubMed] [Google Scholar]
  3. Ezaki J., Takeda-Ezaki M., Oda K., Kominami E. Characterization of endopeptidase activity of tripeptidyl peptidase-I/CLN2 protein which is deficient in classical late infantile neuronal ceroid lipofuscinosis. Biochem Biophys Res Commun. 2000 Feb 24;268(3):904–908. doi: 10.1006/bbrc.2000.2207. [DOI] [PubMed] [Google Scholar]
  4. Friedman M., Krull L. H., Cavins J. F. The chromatographic determination of cystine and cysteine residues in proteins as s-beta-(4-pyridylethyl)cysteine. J Biol Chem. 1970 Aug 10;245(15):3868–3871. [PubMed] [Google Scholar]
  5. Fushimi N., Ee C. E., Nakajima T., Ichishima E. Aspzincin, a family of metalloendopeptidases with a new zinc-binding motif. Identification of new zinc-binding sites (His(128), His(132), and Asp(164)) and three catalytically crucial residues (Glu(129), Asp(143), and Tyr(106)) of deuterolysin from Aspergillus oryzae by site-directed mutagenesis. J Biol Chem. 1999 Aug 20;274(34):24195–24201. doi: 10.1074/jbc.274.34.24195. [DOI] [PubMed] [Google Scholar]
  6. Junaid M. A., Wu G., Pullarkat R. K. Purification and characterization of bovine brain lysosomal pepstatin-insensitive proteinase, the gene product deficient in the human late-infantile neuronal ceroid lipofuscinosis. J Neurochem. 2000 Jan;74(1):287–294. doi: 10.1046/j.1471-4159.2000.0740287.x. [DOI] [PubMed] [Google Scholar]
  7. Komano H., Rockwell N., Wang G. T., Krafft G. A., Fuller R. S. Purification and characterization of the yeast glycosylphosphatidylinositol-anchored, monobasic-specific aspartyl protease yapsin 2 (Mkc7p). J Biol Chem. 1999 Aug 20;274(34):24431–24437. doi: 10.1074/jbc.274.34.24431. [DOI] [PubMed] [Google Scholar]
  8. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lee B. R., Kitamoto K., Yamada O., Kumagai C. Cloning, characterization and overproduction of nuclease S1 gene (nucS) from Aspergillus oryzae. Appl Microbiol Biotechnol. 1995 Dec;44(3-4):425–431. doi: 10.1007/BF00169939. [DOI] [PubMed] [Google Scholar]
  11. Lin L., Sohar I., Lackland H., Lobel P. The human CLN2 protein/tripeptidyl-peptidase I is a serine protease that autoactivates at acidic pH. J Biol Chem. 2000 Oct 27;276(3):2249–2255. doi: 10.1074/jbc.M008562200. [DOI] [PubMed] [Google Scholar]
  12. Minetoki T., Nunokawa Y., Gomi K., Kitamoto K., Kumagai C., Tamura G. Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding alpha-glucosidase. Curr Genet. 1996 Nov;30(5):432–438. doi: 10.1007/s002940050153. [DOI] [PubMed] [Google Scholar]
  13. Oda K., Ito M., Uchida K., Shibano Y., Fukuhara K., Takahashi S. Cloning and expression of an isovaleryl pepstatin-insensitive carboxyl proteinase gene from Xanthomonas sp. T-22. J Biochem. 1996 Sep;120(3):564–572. doi: 10.1093/oxfordjournals.jbchem.a021451. [DOI] [PubMed] [Google Scholar]
  14. Oda K., Sugitani M., Fukuhara K., Murao S. Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram-negative bacterium. Biochim Biophys Acta. 1987 Mar 19;923(3):463–469. doi: 10.1016/0304-4165(87)90055-9. [DOI] [PubMed] [Google Scholar]
  15. Oda K., Takahashi T., Tokuda Y., Shibano Y., Takahashi S. Cloning, nucleotide sequence, and expression of an isovaleryl pepstatin-insensitive carboxyl proteinase gene from Pseudomonas sp. 101. J Biol Chem. 1994 Oct 21;269(42):26518–26524. [PubMed] [Google Scholar]
  16. Olsen V., Guruprasad K., Cawley N. X., Chen H. C., Blundell T. L., Loh Y. P. Cleavage efficiency of the novel aspartic protease yapsin 1 (Yap3p) enhanced for substrates with arginine residues flanking the P1 site: correlation with electronegative active-site pockets predicted by molecular modeling. Biochemistry. 1998 Mar 3;37(9):2768–2777. doi: 10.1021/bi9724826. [DOI] [PubMed] [Google Scholar]
  17. Oyama H., Abe S., Ushiyama S., Takahashi S., Oda K. Identification of catalytic residues of pepstatin-insensitive carboxyl proteinases from prokaryotes by site-directed mutagenesis. J Biol Chem. 1999 Sep 24;274(39):27815–27822. doi: 10.1074/jbc.274.39.27815. [DOI] [PubMed] [Google Scholar]
  18. Ozeki K., Kanda A., Hamachi M., Nunokawa Y. Construction of a promoter probe vector autonomously maintained in Aspergillus and characterization of promoter regions derived from A. niger and A. oryzae genomes. Biosci Biotechnol Biochem. 1996 Mar;60(3):383–389. doi: 10.1271/bbb.60.383. [DOI] [PubMed] [Google Scholar]
  19. Rawlings N. D., Barrett A. J. Tripeptidyl-peptidase I is apparently the CLN2 protein absent in classical late-infantile neuronal ceroid lipofuscinosis. Biochim Biophys Acta. 1999 Jan 11;1429(2):496–500. doi: 10.1016/s0167-4838(98)00238-6. [DOI] [PubMed] [Google Scholar]
  20. Rawlings Neil D., O'Brien Emmet, Barrett Alan J. MEROPS: the protease database. Nucleic Acids Res. 2002 Jan 1;30(1):343–346. doi: 10.1093/nar/30.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sleat D. E., Donnelly R. J., Lackland H., Liu C. G., Sohar I., Pullarkat R. K., Lobel P. Association of mutations in a lysosomal protein with classical late-infantile neuronal ceroid lipofuscinosis. Science. 1997 Sep 19;277(5333):1802–1805. doi: 10.1126/science.277.5333.1802. [DOI] [PubMed] [Google Scholar]
  22. Takahashi K. Proteinase A from Aspergillus niger. Methods Enzymol. 1995;248:146–155. doi: 10.1016/0076-6879(95)48012-9. [DOI] [PubMed] [Google Scholar]
  23. Umezawa H., Aoyagi T., Morishima H., Matsuzaki M., Hamada M. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J Antibiot (Tokyo) 1970 May;23(5):259–262. doi: 10.7164/antibiotics.23.259. [DOI] [PubMed] [Google Scholar]
  24. Wisniewski K. E., Kaczmarski A., Kida E., Connell F., Kaczmarski W., Michalewski M. P., Moroziewicz D. N., Zhong N. Reevaluation of neuronal ceroid lipofuscinoses: atypical juvenile onset may be the result of CLN2 mutations. Mol Genet Metab. 1999 Apr;66(4):248–252. doi: 10.1006/mgme.1999.2814. [DOI] [PubMed] [Google Scholar]
  25. Wlodawer A., Li M., Dauter Z., Gustchina A., Uchida K., Oyama H., Dunn B. M., Oda K. Carboxyl proteinase from Pseudomonas defines a novel family of subtilisin-like enzymes. Nat Struct Biol. 2001 May;8(5):442–446. doi: 10.1038/87610. [DOI] [PubMed] [Google Scholar]
  26. Wlodawer A., Li M., Gustchina A., Dauter Z., Uchida K., Oyama H., Goldfarb N. E., Dunn B. M., Oda K. Inhibitor complexes of the Pseudomonas serine-carboxyl proteinase. Biochemistry. 2001 Dec 25;40(51):15602–15611. doi: 10.1021/bi011817n. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES