Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):451–462. doi: 10.1042/BJ20021318

Cystic fibrosis transmembrane conductance regulator: the NBF1+R (nucleotide-binding fold 1 and regulatory domain) segment acting alone catalyses a Co2+/Mn2+/Mg2+-ATPase activity markedly inhibited by both Cd2+ and the transition-state analogue orthovanadate.

Jean Philippe Annereau 1, Young Hee Ko 1, Peter L Pedersen 1
PMCID: PMC1223294  PMID: 12523935

Abstract

Cystic fibrosis (CF) is caused by mutations in the gene encoding CFTR (cystic fibrosis transmembrane conductance regulator), a regulated anion channel and member of the ATP-binding-cassette transporter (ABC transporter) superfamily. Of CFTR's five domains, the first nucleotide-binding fold (NBF1) has been of greatest interest both because it is the major 'hotspot' for mutations that cause CF, and because it is connected to a unique regulatory domain (R). However, attempts have failed to obtain a catalytically active NBF1+R protein in the absence of a fusion partner. Here, we report that such a protein can be obtained following its overexpression in bacteria. The pure NBF1+R protein exhibits significant ATPase activity [catalytic-centre activity (turnover number) 6.7 min(-1)] and an apparent affinity for ATP ( K (m), 8.7 microM) higher than reported previously for CFTR or segments thereof. As predicted, the ATPase activity is inhibited by mutations in the Walker A motif. It is also inhibited by vanadate, a transition-state analogue. Surprisingly, however, the best divalent metal activator is Co(2+), followed by Mn(2+) and Mg(2+). In contrast, Ca(2+) is ineffective and Cd(2+) is a potent inhibitor. These novel studies, while demonstrating clearly that CFTR's NBF1+R segment can act independently as an active, vanadate-sensitive ATPase, also identify its unique cation activators and a new inhibitor, thus providing insight into the nature of its active site.

Full Text

The Full Text of this article is available as a PDF (377.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahams J. P., Leslie A. G., Lutter R., Walker J. E. Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria. Nature. 1994 Aug 25;370(6491):621–628. doi: 10.1038/370621a0. [DOI] [PubMed] [Google Scholar]
  2. Akabas M. H. Cystic fibrosis transmembrane conductance regulator. Structure and function of an epithelial chloride channel. J Biol Chem. 2000 Feb 11;275(6):3729–3732. doi: 10.1074/jbc.275.6.3729. [DOI] [PubMed] [Google Scholar]
  3. Bal N., Mintz E., Guillain F., Catty P. A possible regulatory role for the metal-binding domain of CadA, the Listeria monocytogenes Cd2+-ATPase. FEBS Lett. 2001 Oct 12;506(3):249–252. doi: 10.1016/s0014-5793(01)02927-1. [DOI] [PubMed] [Google Scholar]
  4. Bear C. E., Li C., Galley K., Wang Y., Garami E., Ramjeesingh M. Coupling of ATP hydrolysis with channel gating by purified, reconstituted CFTR. J Bioenerg Biomembr. 1997 Oct;29(5):465–473. doi: 10.1023/a:1022435007193. [DOI] [PubMed] [Google Scholar]
  5. Bianchet M. A., Hullihen J., Pedersen P. L., Amzel L. M. The 2.8-A structure of rat liver F1-ATPase: configuration of a critical intermediate in ATP synthesis/hydrolysis. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11065–11070. doi: 10.1073/pnas.95.19.11065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bianchet M. A., Ko Y. H., Amzel L. M., Pedersen P. L. Modeling of nucleotide binding domains of ABC transporter proteins based on a F1-ATPase/recA topology: structural model of the nucleotide binding domains of the cystic fibrosis transmembrane conductance regulator (CFTR). J Bioenerg Biomembr. 1997 Oct;29(5):503–524. doi: 10.1023/a:1022443209010. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  8. Cai Jie, Daoud Roni, Alqawi Omar, Georges Elias, Pelletier Jerry, Gros Philippe. Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6). Biochemistry. 2002 Jun 25;41(25):8058–8067. doi: 10.1021/bi012082p. [DOI] [PubMed] [Google Scholar]
  9. Castagnetto Jesus M., Hennessy Sean W., Roberts Victoria A., Getzoff Elizabeth D., Tainer John A., Pique Michael E. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucleic Acids Res. 2002 Jan 1;30(1):379–382. doi: 10.1093/nar/30.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chang G., Roth C. B. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science. 2001 Sep 7;293(5536):1793–1800. doi: 10.1126/science.293.5536.1793. [DOI] [PubMed] [Google Scholar]
  11. Cremo C. R., Grammer J. C., Yount R. G. Direct chemical evidence that serine 180 in the glycine-rich loop of myosin binds to ATP. J Biol Chem. 1989 Apr 25;264(12):6608–6611. [PubMed] [Google Scholar]
  12. Deng W. P., Nickoloff J. A. Site-directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal Biochem. 1992 Jan;200(1):81–88. doi: 10.1016/0003-2697(92)90280-k. [DOI] [PubMed] [Google Scholar]
  13. Diederichs K., Diez J., Greller G., Müller C., Breed J., Schnell C., Vonrhein C., Boos W., Welte W. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 2000 Nov 15;19(22):5951–5961. doi: 10.1093/emboj/19.22.5951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Duffieux F., Annereau J. P., Boucher J., Miclet E., Pamlard O., Schneider M., Stoven V., Lallemand J. Y. Nucleotide-binding domain 1 of cystic fibrosis transmembrane conductance regulator production of a suitable protein for structural studies. Eur J Biochem. 2000 Sep;267(17):5306–5312. doi: 10.1046/j.1432-1327.2000.01614.x. [DOI] [PubMed] [Google Scholar]
  15. EADIE G. S. On the evaluation of the constants Vm and Km in enzyme reactions. Science. 1952 Dec 19;116(3025):688–688. doi: 10.1126/science.116.3025.688. [DOI] [PubMed] [Google Scholar]
  16. Gadsby D. C., Nairn A. C. Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis. Physiol Rev. 1999 Jan;79(1 Suppl):S77–S107. doi: 10.1152/physrev.1999.79.1.S77. [DOI] [PubMed] [Google Scholar]
  17. Gentzsch Martina, Aleksandrov Andrei, Aleksandrov Luba, Riordan John R. Functional analysis of the C-terminal boundary of the second nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator and structural implications. Biochem J. 2002 Sep 1;366(Pt 2):541–548. doi: 10.1042/BJ20020511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  19. Higgins C. F. ABC transporters: physiology, structure and mechanism--an overview. Res Microbiol. 2001 Apr-May;152(3-4):205–210. doi: 10.1016/s0923-2508(01)01193-7. [DOI] [PubMed] [Google Scholar]
  20. Hopfner K. P., Karcher A., Shin D. S., Craig L., Arthur L. M., Carney J. P., Tainer J. A. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell. 2000 Jun 23;101(7):789–800. doi: 10.1016/s0092-8674(00)80890-9. [DOI] [PubMed] [Google Scholar]
  21. Howell L. D., Borchardt R., Cohn J. A. ATP hydrolysis by a CFTR domain: pharmacology and effects of G551D mutation. Biochem Biophys Res Commun. 2000 May 10;271(2):518–525. doi: 10.1006/bbrc.2000.2659. [DOI] [PubMed] [Google Scholar]
  22. Hung L. W., Wang I. X., Nikaido K., Liu P. Q., Ames G. F., Kim S. H. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature. 1998 Dec 17;396(6712):703–707. doi: 10.1038/25393. [DOI] [PubMed] [Google Scholar]
  23. Ikuma M., Welsh M. J. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis. Proc Natl Acad Sci U S A. 2000 Jul 18;97(15):8675–8680. doi: 10.1073/pnas.140220597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Itaya K., Ui M. A new micromethod for the colorimetric determination of inorganic phosphate. Clin Chim Acta. 1966 Sep;14(3):361–366. doi: 10.1016/0009-8981(66)90114-8. [DOI] [PubMed] [Google Scholar]
  25. Jones P. M., George A. M. Subunit interactions in ABC transporters: towards a functional architecture. FEMS Microbiol Lett. 1999 Oct 15;179(2):187–202. doi: 10.1111/j.1574-6968.1999.tb08727.x. [DOI] [PubMed] [Google Scholar]
  26. Ko Y. H., Bianchet M., Amzel L. M., Pedersen P. L. Novel insights into the chemical mechanism of ATP synthase. Evidence that in the transition state the gamma-phosphate of ATP is near the conserved alanine within the P-loop of the beta-subunit. J Biol Chem. 1997 Jul 25;272(30):18875–18881. doi: 10.1074/jbc.272.30.18875. [DOI] [PubMed] [Google Scholar]
  27. Ko Y. H., Delannoy M., Pedersen P. L. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function. Biochemistry. 1997 Apr 22;36(16):5053–5064. doi: 10.1021/bi9630265. [DOI] [PubMed] [Google Scholar]
  28. Ko Y. H., Pedersen P. L. Cystic fibrosis: a brief look at some highlights of a decade of research focused on elucidating and correcting the molecular basis of the disease. J Bioenerg Biomembr. 2001 Dec;33(6):513–521. doi: 10.1023/a:1012831322753. [DOI] [PubMed] [Google Scholar]
  29. Ko Y. H., Pedersen P. L. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase. J Biol Chem. 1995 Sep 22;270(38):22093–22096. doi: 10.1074/jbc.270.38.22093. [DOI] [PubMed] [Google Scholar]
  30. Ko Y. H., Thomas P. J., Delannoy M. R., Pedersen P. L. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem. 1993 Nov 15;268(32):24330–24338. [PubMed] [Google Scholar]
  31. Kogan Ilana, Ramjeesingh Mohabir, Li Canhui, Bear Christine E. Studies of the molecular basis for cystic fibrosis using purified reconstituted CFTR protein. Methods Mol Med. 2002;70:143–157. doi: 10.1385/1-59259-187-6:143. [DOI] [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Li C., Ramjeesingh M., Wang W., Garami E., Hewryk M., Lee D., Rommens J. M., Galley K., Bear C. E. ATPase activity of the cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1996 Nov 8;271(45):28463–28468. doi: 10.1074/jbc.271.45.28463. [DOI] [PubMed] [Google Scholar]
  34. Locher Kaspar P., Lee Allen T., Rees Douglas C. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science. 2002 May 10;296(5570):1091–1098. doi: 10.1126/science.1071142. [DOI] [PubMed] [Google Scholar]
  35. Lu N. T., Pedersen P. L. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region. Arch Biochem Biophys. 2000 Mar 1;375(1):7–20. doi: 10.1006/abbi.1999.1656. [DOI] [PubMed] [Google Scholar]
  36. MacLennan D. H., Green N. M. Structural biology. Pumping ions. Nature. 2000 Jun 8;405(6787):633–634. doi: 10.1038/35015206. [DOI] [PubMed] [Google Scholar]
  37. Massiah M. A., Ko Y. H., Pedersen P. L., Mildvan A. S. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation. Biochemistry. 1999 Jun 8;38(23):7453–7461. doi: 10.1021/bi9903603. [DOI] [PubMed] [Google Scholar]
  38. Mildvan A. S. Mechanisms of signaling and related enzymes. Proteins. 1997 Dec;29(4):401–416. [PubMed] [Google Scholar]
  39. Moody Jonathan E., Millen Linda, Binns Derk, Hunt John F., Thomas Philip J. Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem. 2002 Apr 18;277(24):21111–21114. doi: 10.1074/jbc.C200228200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Neville D. C., Rozanas C. R., Tulk B. M., Townsend R. R., Verkman A. S. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions. Biochemistry. 1998 Feb 24;37(8):2401–2409. doi: 10.1021/bi972021k. [DOI] [PubMed] [Google Scholar]
  41. Ostedgaard L. S., Baldursson O., Vermeer D. W., Welsh M. J., Robertson A. D. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5657–5662. doi: 10.1073/pnas.100588797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ostedgaard L. S., Rich D. P., DeBerg L. G., Welsh M. J. Association of domains within the cystic fibrosis transmembrane conductance regulator. Biochemistry. 1997 Feb 11;36(6):1287–1294. doi: 10.1021/bi962174s. [DOI] [PubMed] [Google Scholar]
  43. Ramjeesingh M., Li C., Garami E., Huan L. J., Hewryk M., Wang Y., Galley K., Bear C. E. A novel procedure for the efficient purification of the cystic fibrosis transmembrane conductance regulator (CFTR). Biochem J. 1997 Oct 1;327(Pt 1):17–21. doi: 10.1042/bj3270017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Randak C., Neth P., Auerswald E. A., Eckerskorn C., Assfalg-Machleidt I., Machleidt W. A recombinant polypeptide model of the second nucleotide-binding fold of the cystic fibrosis transmembrane conductance regulator functions as an active ATPase, GTPase and adenylate kinase. FEBS Lett. 1997 Jun 30;410(2-3):180–186. doi: 10.1016/s0014-5793(97)00574-7. [DOI] [PubMed] [Google Scholar]
  45. Reynafarje B. D., Pedersen P. L. ATP synthase. Conditions under which all catalytic sites of the F1 moiety are kinetically equivalent in hydrolyzing ATP. J Biol Chem. 1996 Dec 20;271(51):32546–32550. doi: 10.1074/jbc.271.51.32546. [DOI] [PubMed] [Google Scholar]
  46. Riordan J. R. Cystic fibrosis as a disease of misprocessing of the cystic fibrosis transmembrane conductance regulator glycoprotein. Am J Hum Genet. 1999 Jun;64(6):1499–1504. doi: 10.1086/302429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N., Chou J. L. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989 Sep 8;245(4922):1066–1073. doi: 10.1126/science.2475911. [DOI] [PubMed] [Google Scholar]
  48. Urbatsch I. L., Sankaran B., Weber J., Senior A. E. P-glycoprotein is stably inhibited by vanadate-induced trapping of nucleotide at a single catalytic site. J Biol Chem. 1995 Aug 18;270(33):19383–19390. doi: 10.1074/jbc.270.33.19383. [DOI] [PubMed] [Google Scholar]
  49. Wang Wenlan, He Zhaoping, O'Shaughnessy Thomas J., Rux John, Reenstra William W. Domain-domain associations in cystic fibrosis transmembrane conductance regulator. Am J Physiol Cell Physiol. 2002 May;282(5):C1170–C1180. doi: 10.1152/ajpcell.00337.2001. [DOI] [PubMed] [Google Scholar]
  50. Wei Y., Chen J., Rosas G., Tompkins D. A., Holt P. A., Rao R. Phenotypic screening of mutations in Pmr1, the yeast secretory pathway Ca2+/Mn2+-ATPase, reveals residues critical for ion selectivity and transport. J Biol Chem. 2000 Aug 4;275(31):23927–23932. doi: 10.1074/jbc.M002618200. [DOI] [PubMed] [Google Scholar]
  51. Welsh M. J., Ramsey B. W. Research on cystic fibrosis: a journey from the Heart House. Am J Respir Crit Care Med. 1998 Apr;157(4 Pt 2):S148–S154. doi: 10.1164/ajrccm.157.4.nhlbi-13. [DOI] [PubMed] [Google Scholar]
  52. Williams N., Hullihen J., Pedersen P. L. Ligand binding studies of the F1 moiety of rat liver ATP synthase: implications about the enzyme's structure and mechanism. Biochemistry. 1987 Jan 13;26(1):162–169. doi: 10.1021/bi00375a023. [DOI] [PubMed] [Google Scholar]
  53. Yuan Y. R., Blecker S., Martsinkevich O., Millen L., Thomas P. J., Hunt J. F. The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem. 2001 Jun 11;276(34):32313–32321. doi: 10.1074/jbc.M100758200. [DOI] [PubMed] [Google Scholar]
  54. Zhang A., Gonzalez S. M., Cantor E. J., Chong S. Construction of a mini-intein fusion system to allow both direct monitoring of soluble protein expression and rapid purification of target proteins. Gene. 2001 Sep 19;275(2):241–252. doi: 10.1016/s0378-1119(01)00663-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES