Abstract
A contribution of intracellular dehydration to insulin resistance has been established in human subjects and in different experimental systems. Here the effect of hyperosmolarity (405 mosmol/l) on insulin-induced mitogen-activated protein (MAP) kinase phosphatase (MKP)-1 expression was studied in H4IIE rat hepatoma cells. Insulin induces robust MKP-1 expression which correlates with a vanadate-sensitive decay of extracellular-signal-regulated kinase (Erk-1/Erk-2) activity. Hyperosmolarity delays MKP-1 accumulation by insulin and this corresponds to impaired MKP-1 synthesis, whereas MKP-1 degradation remains unaffected by hyperosmolarity. Rapamycin, which inhibits signalling downstream from the mammalian target of rapamycin (mTOR) and a peptide inhibiting protein kinase C (PKC) zeta/lambda abolish insulin-induced MKP-1 protein but not mRNA expression, suggesting the involvement of the p70 ribosomal S6 protein kinase (p70S6-kinase) and/or the eukaryotic initiation factor 4E-binding proteins (4E-BPs) as well as atypical PKCs in MKP-1 translation. Hyperosmolarity induces sustained suppression of p70S6-kinase and 4E-BP1 hyperphosphorylation by insulin, whereas insulin-induced tyrosine phosphorylation of the insulin receptor (IR) beta subunit and the IR substrates IRS1 and IRS2, recruitment of the phosphoinositide 3-kinase (PI 3-kinase) regulatory subunit p85 to the receptor substrates as well as PI 3-kinase activation, and Ser-473 phosphorylation of protein kinase B and Thr-410/403 phosphorylation of PKC zeta/lambda are largely unaffected under hyperosmotic conditions. The hyperosmotic impairment of both, MKP-1 expression and p70S6-kinase hyperphosphorylation by insulin is insensitive to K(2)CrO(4), calyculin A and vanadate, and inhibition of the Erk-1/Erk-2 and p38 pathways. The suppression of MKP-1 may further contribute to insulin resistance under dehydrating conditions by allowing unbalanced MAP kinase activation.
Full Text
The Full Text of this article is available as a PDF (440.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alessi D. R., Cohen P., Ashworth A., Cowley S., Leevers S. J., Marshall C. J. Assay and expression of mitogen-activated protein kinase, MAP kinase kinase, and Raf. Methods Enzymol. 1995;255:279–290. doi: 10.1016/s0076-6879(95)55031-3. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995 Nov 17;270(46):27489–27494. doi: 10.1074/jbc.270.46.27489. [DOI] [PubMed] [Google Scholar]
- Alessi D. R., Gomez N., Moorhead G., Lewis T., Keyse S. M., Cohen P. Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Curr Biol. 1995 Mar 1;5(3):283–295. doi: 10.1016/s0960-9822(95)00059-5. [DOI] [PubMed] [Google Scholar]
- Barnes Kay, Ingram Jean C., Porras Omar H., Barros L. Felipe, Hudson Emma R., Fryer Lee G. D., Foufelle Fabienne, Carling David, Hardie D. Grahame, Baldwin Stephen A. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci. 2002 Jun 1;115(Pt 11):2433–2442. doi: 10.1242/jcs.115.11.2433. [DOI] [PubMed] [Google Scholar]
- Begum N., Ragolia L. High glucose and insulin inhibit VSMC MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol Cell Physiol. 2000 Jan;278(1):C81–C91. doi: 10.1152/ajpcell.2000.278.1.C81. [DOI] [PubMed] [Google Scholar]
- Bratusch-Marrain P. R., DeFronzo R. A. Impairment of insulin-mediated glucose metabolism by hyperosmolality in man. Diabetes. 1983 Nov;32(11):1028–1034. doi: 10.2337/diab.32.11.1028. [DOI] [PubMed] [Google Scholar]
- Brondello J. M., Pouysségur J., McKenzie F. R. Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 1999 Dec 24;286(5449):2514–2517. doi: 10.1126/science.286.5449.2514. [DOI] [PubMed] [Google Scholar]
- Camps M., Nichols A., Arkinstall S. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J. 2000 Jan;14(1):6–16. [PubMed] [Google Scholar]
- Chen D., Fucini R. V., Olson A. L., Hemmings B. A., Pessin J. E. Osmotic shock inhibits insulin signaling by maintaining Akt/protein kinase B in an inactive dephosphorylated state. Mol Cell Biol. 1999 Jul;19(7):4684–4694. doi: 10.1128/mcb.19.7.4684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen J., Ishac E. J., Dent P., Kunos G., Gao B. Effects of ethanol on mitogen-activated protein kinase and stress-activated protein kinase cascades in normal and regenerating liver. Biochem J. 1998 Sep 15;334(Pt 3):669–676. doi: 10.1042/bj3340669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Crespo José L., Powers Ted, Fowler Brian, Hall Michael N. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A. 2002 May 7;99(10):6784–6789. doi: 10.1073/pnas.102687599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies S. P., Reddy H., Caivano M., Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95–105. doi: 10.1042/0264-6021:3510095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dennis P. B., Jaeschke A., Saitoh M., Fowler B., Kozma S. C., Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science. 2001 Nov 2;294(5544):1102–1105. doi: 10.1126/science.1063518. [DOI] [PubMed] [Google Scholar]
- Ge Baoxue, Gram Hermann, Di Padova Franco, Huang Betty, New Liguo, Ulevitch Richard J., Luo Ying, Han Jiahuai. MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha. Science. 2002 Feb 15;295(5558):1291–1294. doi: 10.1126/science.1067289. [DOI] [PubMed] [Google Scholar]
- Hong F., Nguyen V. A., Shen X., Kunos G., Gao B. Rapid activation of protein kinase B/Akt has a key role in antiapoptotic signaling during liver regeneration. Biochem Biophys Res Commun. 2000 Dec 29;279(3):974–979. doi: 10.1006/bbrc.2000.4044. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Hallbrucker C., vom Dahl S., Decker S., Schweizer U., Lang F., Gerok W. Cell volume is a major determinant of proteolysis control in liver. FEBS Lett. 1991 May 20;283(1):70–72. doi: 10.1016/0014-5793(91)80556-i. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Lang F. Cell volume and hormone action. Trends Pharmacol Sci. 1992 Oct;13(10):371–373. doi: 10.1016/0165-6147(92)90114-l. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Roth E., Lang F., Gerok W. Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet. 1993 May 22;341(8856):1330–1332. doi: 10.1016/0140-6736(93)90828-5. [DOI] [PubMed] [Google Scholar]
- Häussinger D., Schliess F., Dombrowski F., Vom Dahl S. Involvement of p38MAPK in the regulation of proteolysis by liver cell hydration. Gastroenterology. 1999 Apr;116(4):921–935. doi: 10.1016/s0016-5085(99)70076-4. [DOI] [PubMed] [Google Scholar]
- Igarashi M., Wakasaki H., Takahara N., Ishii H., Jiang Z. Y., Yamauchi T., Kuboki K., Meier M., Rhodes C. J., King G. L. Glucose or diabetes activates p38 mitogen-activated protein kinase via different pathways. J Clin Invest. 1999 Jan;103(2):185–195. doi: 10.1172/JCI3326. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson J. R., Bolognese B., Hillegass L., Kassis S., Adams J., Griswold D. E., Winkler J. D. Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther. 1998 Feb;284(2):687–692. [PubMed] [Google Scholar]
- Kahn C. R. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes. 1994 Aug;43(8):1066–1084. doi: 10.2337/diab.43.8.1066. [DOI] [PubMed] [Google Scholar]
- Kurz A. K., Block C., Graf D., Dahl S. V., Schliess F., Häussinger D. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver. Biochem J. 2000 Aug 15;350(Pt 1):207–213. [PMC free article] [PubMed] [Google Scholar]
- Lai K., Wang H., Lee W. S., Jain M. K., Lee M. E., Haber E. Mitogen-activated protein kinase phosphatase-1 in rat arterial smooth muscle cell proliferation. J Clin Invest. 1996 Oct 1;98(7):1560–1567. doi: 10.1172/JCI118949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y., Gorospe M., Yang C., Holbrook N. J. Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP-1-dependent gene activation. J Biol Chem. 1995 Apr 14;270(15):8377–8380. doi: 10.1074/jbc.270.15.8377. [DOI] [PubMed] [Google Scholar]
- Lizcano Jose M., Alessi Dario R. The insulin signalling pathway. Curr Biol. 2002 Apr 2;12(7):R236–R238. doi: 10.1016/s0960-9822(02)00777-7. [DOI] [PubMed] [Google Scholar]
- Mèndez R., Myers M. G., Jr, White M. F., Rhoads R. E. Stimulation of protein synthesis, eukaryotic translation initiation factor 4E phosphorylation, and PHAS-I phosphorylation by insulin requires insulin receptor substrate 1 and phosphatidylinositol 3-kinase. Mol Cell Biol. 1996 Jun;16(6):2857–2864. doi: 10.1128/mcb.16.6.2857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parrott L. A., Templeton D. J. Osmotic stress inhibits p70/85 S6 kinase through activation of a protein phosphatase. J Biol Chem. 1999 Aug 27;274(35):24731–24736. doi: 10.1074/jbc.274.35.24731. [DOI] [PubMed] [Google Scholar]
- Price D. J., Grove J. R., Calvo V., Avruch J., Bierer B. E. Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science. 1992 Aug 14;257(5072):973–977. doi: 10.1126/science.1380182. [DOI] [PubMed] [Google Scholar]
- Schliess F., Heinrich S., Häussinger D. Hyperosmotic induction of the mitogen-activated protein kinase phosphatase MKP-1 in H4IIE rat hepatoma cells. Arch Biochem Biophys. 1998 Mar 1;351(1):35–40. doi: 10.1006/abbi.1997.0517. [DOI] [PubMed] [Google Scholar]
- Schliess F., Häussinger D. Cell hydration and insulin signalling. Cell Physiol Biochem. 2000;10(5-6):403–408. doi: 10.1159/000016378. [DOI] [PubMed] [Google Scholar]
- Schliess F., Wiese S., Haussinger D. Osmotic regulation of the heat shock response in H4IIE rat hepatoma cells. FASEB J. 1999 Sep;13(12):1557–1564. doi: 10.1096/fasebj.13.12.1557. [DOI] [PubMed] [Google Scholar]
- Schliess F., von Dahl S., Häussinger D. Insulin resistance induced by loop diuretics and hyperosmolarity in perfused rat liver. Biol Chem. 2001 Jul;382(7):1063–1069. doi: 10.1515/BC.2001.133. [DOI] [PubMed] [Google Scholar]
- Shigemitsu K., Tsujishita Y., Hara K., Nanahoshi M., Avruch J., Yonezawa K. Regulation of translational effectors by amino acid and mammalian target of rapamycin signaling pathways. Possible involvement of autophagy in cultured hepatoma cells. J Biol Chem. 1999 Jan 8;274(2):1058–1065. doi: 10.1074/jbc.274.2.1058. [DOI] [PubMed] [Google Scholar]
- Standaert M. L., Bandyopadhyay G., Perez L., Price D., Galloway L., Poklepovic A., Sajan M. P., Cenni V., Sirri A., Moscat J. Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem. 1999 Sep 3;274(36):25308–25316. doi: 10.1074/jbc.274.36.25308. [DOI] [PubMed] [Google Scholar]
- Sutherland C., Tebbey P. W., Granner D. K. Oxidative and chemical stress mimic insulin by selectively inhibiting the expression of phosphoenolpyruvate carboxykinase in hepatoma cells. Diabetes. 1997 Jan;46(1):17–22. doi: 10.2337/diab.46.1.17. [DOI] [PubMed] [Google Scholar]
- Taha C., Klip A. The insulin signaling pathway. J Membr Biol. 1999 May 1;169(1):1–12. doi: 10.1007/pl00005896. [DOI] [PubMed] [Google Scholar]
- Tomlinson D. R. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia. 1999 Nov;42(11):1271–1281. doi: 10.1007/s001250051439. [DOI] [PubMed] [Google Scholar]
- Waldhäusl W., Kleinberger G., Korn A., Dudczak R., Bratusch-Marrain P., Nowotny P. Severe hyperglycemia: effects of rehydration on endocrine derangements and blood glucose concentration. Diabetes. 1979 Jun;28(6):577–584. doi: 10.2337/diab.28.6.577. [DOI] [PubMed] [Google Scholar]
- Wiese S., Schliess F., Häussinger D. Osmotic regulation of MAP-kinase activities and gene expression in H4IIE rat hepatoma cells. Biol Chem. 1998 Jun;379(6):667–671. doi: 10.1515/bchm.1998.379.6.667. [DOI] [PubMed] [Google Scholar]