Abstract
Angiotensin I-converting enzyme (ACE) is a highly glycosylated type I integral membrane protein. A series of underglycosylated testicular ACE (tACE) glycoforms, lacking between one and five N-linked glycosylation sites, were used to assess the role of glycosylation in tACE processing, crystallization and enzyme activity. Whereas underglycosylated glycoforms showed differences in expression and processing, their kinetic parameters were similar to that of native tACE. N-glycosylation of Asn-72 or Asn-109 was necessary and sufficient for the production of enzymically active tACE but glycosylation of Asn-90 alone resulted in rapid intracellular degradation. All mutants showed similar levels of phorbol ester stimulation and were solubilized at the same juxtamembrane cleavage site as the native enzyme. Two mutants, tACEDelta36-g1234 and -g13, were successfully crystallized, diffracting to 2.8 and 3.0 A resolution respectively. Furthermore, a truncated, soluble tACE (tACEDelta36NJ), expressed in the presence of the glucosidase-I inhibitor N -butyldeoxynojirimycin, retained the activity of the native enzyme and yielded crystals belonging to the orthorhombic P2(1)2(1)2(1) space group (cell dimensions, a=56.47 A, b=84.90 A, c=133.99 A, alpha=90 degrees, beta=90 degrees and gamma=90 degrees ). These crystals diffracted to 2.0 A resolution. Thus underglycosylated human tACE mutants, lacking O-linked oligosaccharides and most N-linked oligosaccharides or with only simple N-linked oligosaccharides attached throughout the molecule, are suitable for X-ray diffraction studies.
Full Text
The Full Text of this article is available as a PDF (179.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Couvineau A., Fabre C., Gaudin P., Maoret J. J., Laburthe M. Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane. Biochemistry. 1996 Feb 13;35(6):1745–1752. doi: 10.1021/bi952022h. [DOI] [PubMed] [Google Scholar]
- Crackower Michael A., Sarao Renu, Oudit Gavin Y., Yagil Chana, Kozieradzki Ivona, Scanga Sam E., Oliveira-dos-Santos Antonio J., da Costa Joan, Zhang Liyong, Pei York. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002 Jun 20;417(6891):822–828. doi: 10.1038/nature00786. [DOI] [PubMed] [Google Scholar]
- Davis S. J., Davies E. A., Barclay A. N., Daenke S., Bodian D. L., Jones E. Y., Stuart D. I., Butters T. D., Dwek R. A., van der Merwe P. A. Ligand binding by the immunoglobulin superfamily recognition molecule CD2 is glycosylation-independent. J Biol Chem. 1995 Jan 6;270(1):369–375. doi: 10.1074/jbc.270.1.369. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Chen Y. N., Riordan J. F. The unique N-terminal sequence of testis angiotensin-converting enzyme is heavily O-glycosylated and unessential for activity or stability. Biochem Biophys Res Commun. 1992 Feb 28;183(1):199–205. doi: 10.1016/0006-291x(92)91628-4. [DOI] [PubMed] [Google Scholar]
- Ehlers M. R., Fox E. A., Strydom D. J., Riordan J. F. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7741–7745. doi: 10.1073/pnas.86.20.7741. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehlers M. R., Schwager S. L., Scholle R. R., Manji G. A., Brandt W. F., Riordan J. F. Proteolytic release of membrane-bound angiotensin-converting enzyme: role of the juxtamembrane stalk sequence. Biochemistry. 1996 Jul 23;35(29):9549–9559. doi: 10.1021/bi9602425. [DOI] [PubMed] [Google Scholar]
- Imperiali B., O'Connor S. E. Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr Opin Chem Biol. 1999 Dec;3(6):643–649. doi: 10.1016/s1367-5931(99)00021-6. [DOI] [PubMed] [Google Scholar]
- Mayer M., Meyer B. Mapping the active site of angiotensin-converting enzyme by transferred NOE spectroscopy. J Med Chem. 2000 Jun 1;43(11):2093–2099. doi: 10.1021/jm990194x. [DOI] [PubMed] [Google Scholar]
- Misago M., Tsukada J., Fukuda M. N., Eto S. Suppressive effects of swainsonine and N-butyldeoxynojirimycin on human bone marrow neutrophil maturation. Biochem Biophys Res Commun. 2000 Mar 5;269(1):219–225. doi: 10.1006/bbrc.2000.2269. [DOI] [PubMed] [Google Scholar]
- Nachon Florian, Nicolet Yvain, Viguié Nathalie, Masson Patrick, Fontecilla-Camps Juan C., Lockridge Oksana. Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase: expression, purification, characterization and crystallization. Eur J Biochem. 2002 Jan;269(2):630–637. doi: 10.1046/j.0014-2956.2001.02692.x. [DOI] [PubMed] [Google Scholar]
- Natesh Ramanathan, Schwager Sylva L. U., Sturrock Edward D., Acharya K. Ravi. Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature. 2003 Jan 19;421(6922):551–554. doi: 10.1038/nature01370. [DOI] [PubMed] [Google Scholar]
- Sadhukhan R., Sen I. Different glycosylation requirements for the synthesis of enzymatically active angiotensin-converting enzyme in mammalian cells and yeast. J Biol Chem. 1996 Mar 15;271(11):6429–6434. doi: 10.1074/jbc.271.11.6429. [DOI] [PubMed] [Google Scholar]
- Schwager S. L., Chubb A. J., Scholle R. R., Brandt W. F., Eckerskorn C., Sturrock E. D., Ehlers M. R. Phorbol ester-induced juxtamembrane cleavage of angiotensin-converting enzyme is not inhibited by a stalk containing intrachain disulfides. Biochemistry. 1998 Nov 3;37(44):15449–15456. doi: 10.1021/bi981260k. [DOI] [PubMed] [Google Scholar]
- Schwager S. L., Chubb A. J., Scholle R. R., Brandt W. F., Mentele R., Riordan J. F., Sturrock E. D., Ehlers M. R. Modulation of juxtamembrane cleavage ("shedding") of angiotensin-converting enzyme by stalk glycosylation: evidence for an alternative shedding protease. Biochemistry. 1999 Aug 10;38(32):10388–10397. doi: 10.1021/bi990357j. [DOI] [PubMed] [Google Scholar]
- Tipnis S. R., Hooper N. M., Hyde R., Karran E., Christie G., Turner A. J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000 Oct 27;275(43):33238–33243. doi: 10.1074/jbc.M002615200. [DOI] [PubMed] [Google Scholar]
- Waller C. L., Marshall G. R. Three-dimensional quantitative structure-activity relationship of angiotesin-converting enzyme and thermolysin inhibitors. II. A comparison of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. J Med Chem. 1993 Aug 6;36(16):2390–2403. doi: 10.1021/jm00068a017. [DOI] [PubMed] [Google Scholar]
- Wei L., Alhenc-Gelas F., Corvol P., Clauser E. The two homologous domains of human angiotensin I-converting enzyme are both catalytically active. J Biol Chem. 1991 May 15;266(14):9002–9008. [PubMed] [Google Scholar]
- Yu X. C., Sturrock E. D., Wu Z., Biemann K., Ehlers M. R., Riordan J. F. Identification of N-linked glycosylation sites in human testis angiotensin-converting enzyme and expression of an active deglycosylated form. J Biol Chem. 1997 Feb 7;272(6):3511–3519. doi: 10.1074/jbc.272.6.3511. [DOI] [PubMed] [Google Scholar]
- Zhou A. T., Assil I., Abou-Samra A. B. Role of asparagine-linked oligosaccharides in the function of the rat PTH/PTHrP receptor. Biochemistry. 2000 May 30;39(21):6514–6520. doi: 10.1021/bi992706f. [DOI] [PubMed] [Google Scholar]