Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):369–376. doi: 10.1042/BJ20021538

Tailoring tissue inhibitor of metalloproteinases-3 to overcome the weakening effects of the cysteine-rich domains of tumour necrosis factor-alpha converting enzyme.

Meng-Huee Lee 1, Philippa Dodds 1, Vandana Verma 1, Klaus Maskos 1, Vera Knäuper 1, Gillian Murphy 1
PMCID: PMC1223312  PMID: 12556225

Abstract

Tumour necrosis factor-alpha (TNF-alpha) converting enzyme (TACE) is a membrane-anchored, multiple-domain zinc metalloproteinase responsible for the release of the potent pro-inflammatory cytokine, TNF-alpha. The extracellular part of the active enzyme is composed of a catalytic domain and several cysteine-rich domains. Previously, we reported that these cysteine-rich domains significantly weakened the inhibitory potency of the N-terminal-domain form of tissue inhibitor of metalloproteinases-3 (N-TIMP-3). In the present paper, we describe a novel strategy developed to overcome this weakening effect. We have engineered a new generation of N-TIMP-3 mutants that are capable of withstanding the repulsion of the cysteine-rich domains by the formation of electrostatic bonds with the catalytic domain of the enzyme. These N-TIMP-3 mutants displayed markedly improved binding affinity with the soluble extracellular domain form of recombinant TACE. With K (i) (app) values of <0.1 nM, these mutants were dramatically better than the wild-type N-TIMP-3 [K (i) (app) 1.7 nM]. We accounted for this by proposing that Glu(31), an acidic residue situated at the base of the AB-loop of N-TIMP-3, is drawn into contact with Lys(315), a prominent basic residue adjacent to the TACE catalytic site. The mutagenesis strategy involved reorientation of the edge of N-TIMP-3; in particular, the beta-strand A where Glu(31) was located. Further expression of one of the mutants, Lys(26/27/30/76)-->Glu, in a mammalian expression system confirmed that TIMP-3 associates with the extracellular matrix via its C-terminal domain.

Full Text

The Full Text of this article is available as a PDF (300.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahonen M., Baker A. H., Kähäri V. M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinases-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 1998 Jun 1;58(11):2310–2315. [PubMed] [Google Scholar]
  2. Amour A., Slocombe P. M., Webster A., Butler M., Knight C. G., Smith B. J., Stephens P. E., Shelley C., Hutton M., Knäuper V. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 1998 Sep 11;435(1):39–44. doi: 10.1016/s0014-5793(98)01031-x. [DOI] [PubMed] [Google Scholar]
  3. Black R. A., Rauch C. T., Kozlosky C. J., Peschon J. J., Slack J. L., Wolfson M. F., Castner B. J., Stocking K. L., Reddy P., Srinivasan S. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997 Feb 20;385(6618):729–733. doi: 10.1038/385729a0. [DOI] [PubMed] [Google Scholar]
  4. Blenis J., Hawkes S. P. Characterization of a transformation-sensitive protein in the extracellular matrix of chicken embryo fibroblasts. J Biol Chem. 1984 Sep 25;259(18):11563–11570. [PubMed] [Google Scholar]
  5. Bond M., Murphy G., Bennett M. R., Amour A., Knauper V., Newby A. C., Baker A. H. Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J Biol Chem. 2000 Dec 29;275(52):41358–41363. doi: 10.1074/jbc.M007929200. [DOI] [PubMed] [Google Scholar]
  6. Bond Mark, Murphy Gillian, Bennett Martin R., Newby Andrew C., Baker Andrew H. Tissue inhibitor of metalloproteinase-3 induces a Fas-associated death domain-dependent type II apoptotic pathway. J Biol Chem. 2002 Feb 4;277(16):13787–13795. doi: 10.1074/jbc.M111507200. [DOI] [PubMed] [Google Scholar]
  7. Gearing A. J., Beckett P., Christodoulou M., Churchill M., Clements J., Davidson A. H., Drummond A. H., Galloway W. A., Gilbert R., Gordon J. L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994 Aug 18;370(6490):555–557. doi: 10.1038/370555a0. [DOI] [PubMed] [Google Scholar]
  8. Gomis-Rüth F. X., Maskos K., Betz M., Bergner A., Huber R., Suzuki K., Yoshida N., Nagase H., Brew K., Bourenkov G. P. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 1997 Sep 4;389(6646):77–81. doi: 10.1038/37995. [DOI] [PubMed] [Google Scholar]
  9. Janowska-Wieczorek A., Marquez L. A., Matsuzaki A., Hashmi H. R., Larratt L. M., Boshkov L. M., Turner A. R., Zhang M. C., Edwards D. R., Kossakowska A. E. Expression of matrix metalloproteinases (MMP-2 and -9) and tissue inhibitors of metalloproteinases (TIMP-1 and -2) in acute myelogenous leukaemia blasts: comparison with normal bone marrow cells. Br J Haematol. 1999 May;105(2):402–411. [PubMed] [Google Scholar]
  10. Langton K. P., Barker M. D., McKie N. Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby's fundus dystrophy mutation. J Biol Chem. 1998 Jul 3;273(27):16778–16781. doi: 10.1074/jbc.273.27.16778. [DOI] [PubMed] [Google Scholar]
  11. Leco K. J., Khokha R., Pavloff N., Hawkes S. P., Edwards D. R. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994 Mar 25;269(12):9352–9360. [PubMed] [Google Scholar]
  12. Lee M. H., Knäuper V., Becherer J. D., Murphy G. Full-length and N-TIMP-3 display equal inhibitory activities toward TNF-alpha convertase. Biochem Biophys Res Commun. 2001 Jan 26;280(3):945–950. doi: 10.1006/bbrc.2000.4192. [DOI] [PubMed] [Google Scholar]
  13. Lee Meng-Huee, Maskos Klaus, Knäuper Vera, Dodds Philippa, Murphy Gillian. Mapping and characterization of the functional epitopes of tissue inhibitor of metalloproteinases (TIMP)-3 using TIMP-1 as the scaffold: a new frontier in TIMP engineering. Protein Sci. 2002 Oct;11(10):2493–2503. doi: 10.1110/ps.0216202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee Meng-Huee, Verma Vandana, Maskos Klaus, Becherer J. David, Knäuper Vera, Dodds Philippa, Amour Augustin, Murphy Gillian. The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3. FEBS Lett. 2002 Jun 5;520(1-3):102–106. doi: 10.1016/s0014-5793(02)02776-x. [DOI] [PubMed] [Google Scholar]
  15. Lee Meng-Huee, Verma Vandana, Maskos Klaus, Nath Deepa, Knäuper Vera, Dodds Philippa, Amour Augustin, Murphy Gillian. Engineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-alpha-converting enzyme. Biochem J. 2002 May 15;364(Pt 1):227–234. doi: 10.1042/bj3640227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maskos K., Fernandez-Catalan C., Huber R., Bourenkov G. P., Bartunik H., Ellestad G. A., Reddy P., Wolfson M. F., Rauch C. T., Castner B. J. Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3408–3412. doi: 10.1073/pnas.95.7.3408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McGeehan G. M., Becherer J. D., Bast R. C., Jr, Boyer C. M., Champion B., Connolly K. M., Conway J. G., Furdon P., Karp S., Kidao S. Regulation of tumour necrosis factor-alpha processing by a metalloproteinase inhibitor. Nature. 1994 Aug 18;370(6490):558–561. doi: 10.1038/370558a0. [DOI] [PubMed] [Google Scholar]
  18. Milla M. E., Leesnitzer M. A., Moss M. L., Clay W. C., Carter H. L., Miller A. B., Su J. L., Lambert M. H., Willard D. H., Sheeley D. M. Specific sequence elements are required for the expression of functional tumor necrosis factor-alpha-converting enzyme (TACE). J Biol Chem. 1999 Oct 22;274(43):30563–30570. doi: 10.1074/jbc.274.43.30563. [DOI] [PubMed] [Google Scholar]
  19. Moss M. L., Jin S. L., Milla M. E., Bickett D. M., Burkhart W., Carter H. L., Chen W. J., Clay W. C., Didsbury J. R., Hassler D. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997 Feb 20;385(6618):733–736. doi: 10.1038/385733a0. [DOI] [PubMed] [Google Scholar]
  20. Murphy G., Willenbrock F., Ward R. V., Cockett M. I., Eaton D., Docherty A. J. The C-terminal domain of 72 kDa gelatinase A is not required for catalysis, but is essential for membrane activation and modulates interactions with tissue inhibitors of metalloproteinases. Biochem J. 1992 May 1;283(Pt 3):637–641. doi: 10.1042/bj2830637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tuuttila A., Morgunova E., Bergmann U., Lindqvist Y., Maskos K., Fernandez-Catalan C., Bode W., Tryggvason K., Schneider G. Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 A resolution. J Mol Biol. 1998 Dec 11;284(4):1133–1140. doi: 10.1006/jmbi.1998.2223. [DOI] [PubMed] [Google Scholar]
  22. Williamson R. A., Martorell G., Carr M. D., Murphy G., Docherty A. J., Freedman R. B., Feeney J. Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry. 1994 Oct 4;33(39):11745–11759. doi: 10.1021/bi00205a010. [DOI] [PubMed] [Google Scholar]
  23. Wu B., Arumugam S., Gao G., Lee G. I., Semenchenko V., Huang W., Brew K., Van Doren S. R. NMR structure of tissue inhibitor of metalloproteinases-1 implicates localized induced fit in recognition of matrix metalloproteinases. J Mol Biol. 2000 Jan 14;295(2):257–268. doi: 10.1006/jmbi.1999.3362. [DOI] [PubMed] [Google Scholar]
  24. Yu W. H., Yu S., Meng Q., Brew K., Woessner J. F., Jr TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem. 2000 Oct 6;275(40):31226–31232. doi: 10.1074/jbc.M000907200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES