Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 Apr 15;371(Pt 2):463–471. doi: 10.1042/BJ20021962

MIM-B, a putative metastasis suppressor protein, binds to actin and to protein tyrosine phosphatase delta.

Jacquelyn A Woodings 1, Stewart J Sharp 1, Laura M Machesky 1
PMCID: PMC1223315  PMID: 12570871

Abstract

We have found that MIM-B, a putative metastasis suppressor protein, is implicated in actin cytoskeletal control and interaction with a protein tyrosine phosphatase (PTP). MIM was originally described as a protein whose mRNA was Missing in Metastasis, as it was found not to be present in metastatic bladder carcinoma cell lines [Lee, Y. G., Macoska, J. A., Korenchuk, S. and Pienta, K. J. (2002) Neoplasia 4, 291-294]. We further characterized a variant of MIM, which we call MIM-B, and which we believe may be a link between tyrosine kinase signalling and the actin cytoskeleton. We have shown, using purified proteins and cell extracts, that MIM-B is an actin-binding protein, probably via a WASP (Wiskott-Aldrich syndrome protein)-homology 2 domain at its C-terminus. We have also found that MIM-B binds to the cytoplasmic domain of receptor PTPdelta. Expression of full-length MIM-B induces actin-rich protrusions resembling microspikes and lamellipodia at the plasma membrane and promotes disassembly of actin stress fibres. The C-terminal portion of MIM-B is localized in the cytoplasm and does not affect the actin cytoskeleton when expressed, while the N-terminal portion localizes to internal vesicles and probably targets the protein to membranes. We postulate that MIM-B may be a regulator of actin assembly downstream of tyrosine kinase signalling and that this activity may explain the involvement of MIM in the metastasis of cancer cells.

Full Text

The Full Text of this article is available as a PDF (514.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamsky K., Schilling J., Garwood J., Faissner A., Peles E. Glial tumor cell adhesion is mediated by binding of the FNIII domain of receptor protein tyrosine phosphatase beta (RPTPbeta) to tenascin C. Oncogene. 2001 Feb 1;20(5):609–618. doi: 10.1038/sj.onc.1204119. [DOI] [PubMed] [Google Scholar]
  2. Aspenström P., Olson M. F. Yeast two-hybrid system to detect protein-protein interactions with Rho GTPases. Methods Enzymol. 1995;256:228–241. doi: 10.1016/0076-6879(95)56027-0. [DOI] [PubMed] [Google Scholar]
  3. Bateman J., Reddy R. S., Saito H., Van Vactor D. The receptor tyrosine phosphatase Dlar and integrins organize actin filaments in the Drosophila follicular epithelium. Curr Biol. 2001 Sep 4;11(17):1317–1327. doi: 10.1016/s0960-9822(01)00420-1. [DOI] [PubMed] [Google Scholar]
  4. Bateman J., Shu H., Van Vactor D. The guanine nucleotide exchange factor trio mediates axonal development in the Drosophila embryo. Neuron. 2000 Apr;26(1):93–106. doi: 10.1016/s0896-6273(00)81141-1. [DOI] [PubMed] [Google Scholar]
  5. Boquet I., Boujemaa R., Carlier M. F., Préat T. Ciboulot regulates actin assembly during Drosophila brain metamorphosis. Cell. 2000 Sep 15;102(6):797–808. doi: 10.1016/s0092-8674(00)00068-4. [DOI] [PubMed] [Google Scholar]
  6. Bubb M. R., Lewis M. S., Korn E. D. The interaction of monomeric actin with two binding sites on Acanthamoeba actobindin. J Biol Chem. 1991 Feb 25;266(6):3820–3826. [PubMed] [Google Scholar]
  7. Carlier M. F., Nioche P., Broutin-L'Hermite I., Boujemaa R., Le Clainche C., Egile C., Garbay C., Ducruix A., Sansonetti P., Pantaloni D. GRB2 links signaling to actin assembly by enhancing interaction of neural Wiskott-Aldrich syndrome protein (N-WASp) with actin-related protein (ARP2/3) complex. J Biol Chem. 2000 Jul 21;275(29):21946–21952. doi: 10.1074/jbc.M000687200. [DOI] [PubMed] [Google Scholar]
  8. Cory Giles O. C., Garg Ritu, Cramer Rainer, Ridley Anne J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J Biol Chem. 2002 Sep 15;277(47):45115–45121. doi: 10.1074/jbc.M203346200. [DOI] [PubMed] [Google Scholar]
  9. Donnelly S. F., Pocklington M. J., Pallotta D., Orr E. A proline-rich protein, verprolin, involved in cytoskeletal organization and cellular growth in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1993 Nov;10(3):585–596. doi: 10.1111/j.1365-2958.1993.tb00930.x. [DOI] [PubMed] [Google Scholar]
  10. Higgs H. N., Blanchoin L., Pollard T. D. Influence of the C terminus of Wiskott-Aldrich syndrome protein (WASp) and the Arp2/3 complex on actin polymerization. Biochemistry. 1999 Nov 16;38(46):15212–15222. doi: 10.1021/bi991843+. [DOI] [PubMed] [Google Scholar]
  11. Higgs H. N., Pollard T. D. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem. 2001;70:649–676. doi: 10.1146/annurev.biochem.70.1.649. [DOI] [PubMed] [Google Scholar]
  12. Kerkhoff E., Simpson J. C., Leberfinger C. B., Otto I. M., Doerks T., Bork P., Rapp U. R., Raabe T., Pepperkok R. The Spir actin organizers are involved in vesicle transport processes. Curr Biol. 2001 Dec 11;11(24):1963–1968. doi: 10.1016/s0960-9822(01)00602-9. [DOI] [PubMed] [Google Scholar]
  13. Lammers R., Lerch M. M., Ullrich A. The carboxyl-terminal tyrosine residue of protein-tyrosine phosphatase alpha mediates association with focal adhesion plaques. J Biol Chem. 2000 Feb 4;275(5):3391–3396. doi: 10.1074/jbc.275.5.3391. [DOI] [PubMed] [Google Scholar]
  14. Lee Young-Goo, Macoska Jill A., Korenchuk Susan, Pienta Kenneth J. MIM, a potential metastasis suppressor gene in bladder cancer. Neoplasia. 2002 Jul-Aug;4(4):291–294. doi: 10.1038/sj.neo.7900231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Machesky L. M., Hall A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol. 1997 Aug 25;138(4):913–926. doi: 10.1083/jcb.138.4.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Machesky L. M., Insall R. H. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol. 1998 Dec 17;8(25):1347–1356. doi: 10.1016/s0960-9822(98)00015-3. [DOI] [PubMed] [Google Scholar]
  17. Manseau L. J., Schüpbach T. cappuccino and spire: two unique maternal-effect loci required for both the anteroposterior and dorsoventral patterns of the Drosophila embryo. Genes Dev. 1989 Sep;3(9):1437–1452. doi: 10.1101/gad.3.9.1437. [DOI] [PubMed] [Google Scholar]
  18. Mattila Pieta K., Salminen Marjo, Yamashiro Takashi, Lappalainen Pekka. Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J Biol Chem. 2002 Dec 13;278(10):8452–8459. doi: 10.1074/jbc.M212113200. [DOI] [PubMed] [Google Scholar]
  19. Mullins R. D., Machesky L. M. Actin assembly mediated by Arp2/3 complex and WASP family proteins. Methods Enzymol. 2000;325:214–237. doi: 10.1016/s0076-6879(00)25445-1. [DOI] [PubMed] [Google Scholar]
  20. Naqvi S. N., Zahn R., Mitchell D. A., Stevenson B. J., Munn A. L. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol. 1998 Aug 27;8(17):959–962. doi: 10.1016/s0960-9822(98)70396-3. [DOI] [PubMed] [Google Scholar]
  21. Paunola Eija, Mattila Pieta K., Lappalainen Pekka. WH2 domain: a small, versatile adapter for actin monomers. FEBS Lett. 2002 Feb 20;513(1):92–97. doi: 10.1016/s0014-5793(01)03242-2. [DOI] [PubMed] [Google Scholar]
  22. Pollard T. D., Cooper J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry. 1984 Dec 18;23(26):6631–6641. doi: 10.1021/bi00321a054. [DOI] [PubMed] [Google Scholar]
  23. Pulido R., Krueger N. X., Serra-Pagès C., Saito H., Streuli M. Molecular characterization of the human transmembrane protein-tyrosine phosphatase delta. Evidence for tissue-specific expression of alternative human transmembrane protein-tyrosine phosphatase delta isoforms. J Biol Chem. 1995 Mar 24;270(12):6722–6728. doi: 10.1074/jbc.270.12.6722. [DOI] [PubMed] [Google Scholar]
  24. Safer D., Elzinga M., Nachmias V. T. Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 1991 Mar 5;266(7):4029–4032. [PubMed] [Google Scholar]
  25. Scaplehorn Niki, Holmström Anna, Moreau Violaine, Frischknecht Freddy, Reckmann Inge, Way Michael. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol. 2002 Apr 30;12(9):740–745. doi: 10.1016/s0960-9822(02)00812-6. [DOI] [PubMed] [Google Scholar]
  26. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  27. Vaduva G., Martin N. C., Hopper A. K. Actin-binding verprolin is a polarity development protein required for the morphogenesis and function of the yeast actin cytoskeleton. J Cell Biol. 1997 Dec 29;139(7):1821–1833. doi: 10.1083/jcb.139.7.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wang J., Bixby J. L. Receptor tyrosine phosphatase-delta is a homophilic, neurite-promoting cell adhesion molecular for CNS neurons. Mol Cell Neurosci. 1999 Oct-Nov;14(4-5):370–384. doi: 10.1006/mcne.1999.0789. [DOI] [PubMed] [Google Scholar]
  29. Wellington A., Emmons S., James B., Calley J., Grover M., Tolias P., Manseau L. Spire contains actin binding domains and is related to ascidian posterior end mark-5. Development. 1999 Dec;126(23):5267–5274. doi: 10.1242/dev.126.23.5267. [DOI] [PubMed] [Google Scholar]
  30. Wills Z., Bateman J., Korey C. A., Comer A., Van Vactor D. The tyrosine kinase Abl and its substrate enabled collaborate with the receptor phosphatase Dlar to control motor axon guidance. Neuron. 1999 Feb;22(2):301–312. doi: 10.1016/s0896-6273(00)81091-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES