Abstract
According to the current paradigm, fatty acid (FA) utilization is increased in the diabetic heart. Since plasma levels of competing substrates such as ketone bodies are increased during diabetes, the effect of those substrates on cardiac FA handling was explored. Cardiomyocytes were isolated from control and streptozotocin-treated diabetic rats and incubated with normal (80 microM) and elevated (160 microM) palmitate concentrations in the absence or presence of ketone bodies, including acetoacetate (AcAc). Comparing control cardiomyocytes under normal conditions (80 microM, no AcAc) with diabetic cardiomyocytes (160 microM, 3 mM AcAc) showed that palmitate uptake was increased from 35.2 +/- 4.8 to 60.2 +/- 14.0 nmol x 3 min(-1) x g wet weight(-1) respectively. Under these conditions, palmitate oxidation rates were comparable (58.9 +/- 23.6 versus 53.2 +/- 18.5 nmol x 30 min(-1) x g wet weight(-1)). However, in the absence of AcAc, palmitate oxidation was significantly enhanced in diabetic cardiomyocytes, indicating that ketone bodies are able to suppress cardiac FA oxidation in diabetes. The concomitantly increased FA uptake in diabetic cells, mainly due to the elevated extracellular FA levels, may be responsible for the accumulation of FA and triacylglycerol, as observed in the diabetic heart in situ.
Full Text
The Full Text of this article is available as a PDF (140.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barger P. M., Kelly D. P. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000 Aug;10(6):238–245. doi: 10.1016/s1050-1738(00)00077-3. [DOI] [PubMed] [Google Scholar]
- Charlton J. A., Thompson C. J., Baylis P. H. Possible mechanisms responsible for the rise in plasma vasopressin associated with diabetic ketoacidosis in the rat. J Endocrinol. 1988 Mar;116(3):343–348. doi: 10.1677/joe.0.1160343. [DOI] [PubMed] [Google Scholar]
- Christe M. E., Rodgers R. L. Cardiac glucose and fatty acid oxidation in the streptozotocin-induced diabetic spontaneously hypertensive rat. Hypertension. 1995 Feb;25(2):235–241. doi: 10.1161/01.hyp.25.2.235. [DOI] [PubMed] [Google Scholar]
- Edens N. K., Friedman M. I. Response of normal and diabetic rats to increasing dietary medium-chain triglyceride content. J Nutr. 1984 Mar;114(3):565–573. doi: 10.1093/jn/114.3.565. [DOI] [PubMed] [Google Scholar]
- Feuvray D., Idell-Wenger J. A., Neely J. R. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res. 1979 Mar;44(3):322–329. doi: 10.1161/01.res.44.3.322. [DOI] [PubMed] [Google Scholar]
- Glatz J. F., van Breda E., Keizer H. A., de Jong Y. F., Lakey J. R., Rajotte R. V., Thompson A., van der Vusse G. J., Lopaschuk G. D. Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem Biophys Res Commun. 1994 Mar 15;199(2):639–646. doi: 10.1006/bbrc.1994.1276. [DOI] [PubMed] [Google Scholar]
- Grinblat L., Pacheco Bolaños L. F., Stoppani A. O. Decreased rate of ketone-body oxidation and decreased activity of D-3-hydroxybutyrate dehydrogenase and succinyl-CoA:3-oxo-acid CoA-transferase in heart mitochondria of diabetic rats. Biochem J. 1986 Nov 15;240(1):49–56. doi: 10.1042/bj2400049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall J. L., Stanley W. C., Lopaschuk G. D., Wisneski J. A., Pizzurro R. D., Hamilton C. D., McCormack J. G. Impaired pyruvate oxidation but normal glucose uptake in diabetic pig heart during dobutamine-induced work. Am J Physiol. 1996 Dec;271(6 Pt 2):H2320–H2329. doi: 10.1152/ajpheart.1996.271.6.H2320. [DOI] [PubMed] [Google Scholar]
- Heyliger C. E., Scarim A. L., Eymer V. P., Skau K. A., Powell D. M. Characteristics of the myocardial PM-FABP: effect of diabetes mellitus. Mol Cell Biochem. 1997 Nov;176(1-2):281–286. [PubMed] [Google Scholar]
- Isales C. M., Min L., Hoffman W. H. Acetoacetate and beta-hydroxybutyrate differentially regulate endothelin-1 and vascular endothelial growth factor in mouse brain microvascular endothelial cells. J Diabetes Complications. 1999 Mar-Apr;13(2):91–97. doi: 10.1016/s1056-8727(99)00030-6. [DOI] [PubMed] [Google Scholar]
- Julien P., Gailis L., Lepage M., Roy P. E. A comparison of fatty acid patterns of arterial plasma, pericardial fluid and cardiac lymph in dog. Artery. 1979 Jan;5(1):37–44. [PubMed] [Google Scholar]
- Kante A., Cherkaoui Malki M., Coquard C., Latruffe N. Metabolic control of the expression of mitochondrial D-beta-hydroxybutyrate dehydrogenase, a ketone body converting enzyme. Biochim Biophys Acta. 1990 Mar 26;1033(3):291–297. doi: 10.1016/0304-4165(90)90136-k. [DOI] [PubMed] [Google Scholar]
- Kashiwaya Y., King M. T., Veech R. L. Substrate signaling by insulin: a ketone bodies ratio mimics insulin action in heart. Am J Cardiol. 1997 Aug 4;80(3A):50A–64A. doi: 10.1016/s0002-9149(97)00458-x. [DOI] [PubMed] [Google Scholar]
- Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999 Nov-Dec;15(6):412–426. doi: 10.1002/(sici)1520-7560(199911/12)15:6<412::aid-dmrr72>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
- Larsen T. S., Severson D. L. Influence of exogenous fatty acids and ketone bodies on rates of lipolysis in isolated ventricular myocytes from normal and diabetic rats. Can J Physiol Pharmacol. 1990 Sep;68(9):1177–1182. doi: 10.1139/y90-176. [DOI] [PubMed] [Google Scholar]
- Latruffe N., Vamecq J. Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism. Biochimie. 1997 Feb-Mar;79(2-3):81–94. doi: 10.1016/s0300-9084(97)81496-4. [DOI] [PubMed] [Google Scholar]
- Listenberger L. L., Ory D. S., Schaffer J. E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001 Feb 13;276(18):14890–14895. doi: 10.1074/jbc.M010286200. [DOI] [PubMed] [Google Scholar]
- Lommi J., Koskinen P., Näveri H., Härkönen M., Kupari M. Heart failure ketosis. J Intern Med. 1997 Sep;242(3):231–238. doi: 10.1046/j.1365-2796.1997.00187.x. [DOI] [PubMed] [Google Scholar]
- Lommi J., Kupari M., Yki-Järvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol. 1998 Jan 1;81(1):45–50. doi: 10.1016/s0002-9149(97)00804-7. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G. D., Russell J. C. Myocardial function and energy substrate metabolism in the insulin-resistant JCR:LA corpulent rat. J Appl Physiol (1985) 1991 Oct;71(4):1302–1308. doi: 10.1152/jappl.1991.71.4.1302. [DOI] [PubMed] [Google Scholar]
- Lopaschuk G. D., Tsang H. Metabolism of palmitate in isolated working hearts from spontaneously diabetic "BB" Wistar rats. Circ Res. 1987 Dec;61(6):853–858. doi: 10.1161/01.res.61.6.853. [DOI] [PubMed] [Google Scholar]
- Luiken J. J., Willems J., van der Vusse G. J., Glatz J. F. Electrostimulation enhances FAT/CD36-mediated long-chain fatty acid uptake by isolated rat cardiac myocytes. Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E704–E712. doi: 10.1152/ajpendo.2001.281.4.E704. [DOI] [PubMed] [Google Scholar]
- Luiken J. J., van Nieuwenhoven F. A., America G., van der Vusse G. J., Glatz J. F. Uptake and metabolism of palmitate by isolated cardiac myocytes from adult rats: involvement of sarcolemmal proteins. J Lipid Res. 1997 Apr;38(4):745–758. [PubMed] [Google Scholar]
- Mallov S. Role of calcium and free fatty acids in epinephrine-induced myocardial necrosis. Toxicol Appl Pharmacol. 1983 Nov;71(2):280–287. doi: 10.1016/0041-008x(83)90344-7. [DOI] [PubMed] [Google Scholar]
- Neely J. R., Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol. 1981 Feb;102(2):282–291. [PMC free article] [PubMed] [Google Scholar]
- Owen O. E., Markus H., Sarshik S., Mozzoli M. Relationship between plasma and muscle concentrations of ketone bodies and free fatty acids in fed, starved and alloxan-diabetic states. Biochem J. 1973 Jun;134(2):499–506. doi: 10.1042/bj1340499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulson D. J., Crass M. F., 3rd Endogenous triacylglycerol metabolism in diabetic heart. Am J Physiol. 1982 Jun;242(6):H1084–H1094. doi: 10.1152/ajpheart.1982.242.6.H1084. [DOI] [PubMed] [Google Scholar]
- Pelsers M. M., Lutgerink J. T., Nieuwenhoven F. A., Tandon N. N., van der Vusse G. J., Arends J. W., Hoogenboom H. R., Glatz J. F. A sensitive immunoassay for rat fatty acid translocase (CD36) using phage antibodies selected on cell transfectants: abundant presence of fatty acid translocase/CD36 in cardiac and red skeletal muscle and up-regulation in diabetes. Biochem J. 1999 Feb 1;337(Pt 3):407–414. [PMC free article] [PubMed] [Google Scholar]
- Poole R. C., Halestrap A. P. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr;264(4 Pt 1):C761–C782. doi: 10.1152/ajpcell.1993.264.4.C761. [DOI] [PubMed] [Google Scholar]
- Randle P. J., Newsholme E. A., Garland P. B. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate, and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochem J. 1964 Dec;93(3):652–665. doi: 10.1042/bj0930652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodrigues B., McNeill J. H. The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc Res. 1992 Oct;26(10):913–922. doi: 10.1093/cvr/26.10.913. [DOI] [PubMed] [Google Scholar]
- Saddik M., Lopaschuk G. D. Triacylglycerol turnover in isolated working hearts of acutely diabetic rats. Can J Physiol Pharmacol. 1994 Oct;72(10):1110–1119. doi: 10.1139/y94-157. [DOI] [PubMed] [Google Scholar]
- Stanley W. C., Lopaschuk G. D., McCormack J. G. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Res. 1997 Apr;34(1):25–33. doi: 10.1016/s0008-6363(97)00047-3. [DOI] [PubMed] [Google Scholar]
- Stearns S. B., Tepperman H. M., Tepperman J. Studies on the utilization and mobilization of lipid in skeletal muscles from streptozotocin-diabetic and control rats. J Lipid Res. 1979 Jul;20(5):654–662. [PubMed] [Google Scholar]
- Taegtmeyer H. Genetics of energetics: transcriptional responses in cardiac metabolism. Ann Biomed Eng. 2000 Aug;28(8):871–876. doi: 10.1114/1.1312187. [DOI] [PubMed] [Google Scholar]
- Turpeinen A. K., Kuikka J. T., Vanninen E., Uusitupa M. I. Abnormal myocardial kinetics of 123I-heptadecanoic acid in subjects with impaired glucose tolerance. Diabetologia. 1997 May;40(5):541–549. doi: 10.1007/s001250050713. [DOI] [PubMed] [Google Scholar]
- Umpierrez G. E., Watts N. B., Phillips L. S. Clinical utility of beta-hydroxybutyrate determined by reflectance meter in the management of diabetic ketoacidosis. Diabetes Care. 1995 Jan;18(1):137–138. doi: 10.2337/diacare.18.1.137. [DOI] [PubMed] [Google Scholar]
- Wahren J., Hagenfeldt L., Felig P. Splanchnic and leg exchange of glucose, amino acids, and free fatty acids during exercise in diabetes mellitus. J Clin Invest. 1975 Jun;55(6):1303–1314. doi: 10.1172/JCI108050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
- Wang X., Levi A. J., Halestrap A. P. Substrate and inhibitor specificities of the monocarboxylate transporters of single rat heart cells. Am J Physiol. 1996 Feb;270(2 Pt 2):H476–H484. doi: 10.1152/ajpheart.1996.270.2.H476. [DOI] [PubMed] [Google Scholar]
- Zorzano A., Fandos C., Palacín M. Role of plasma membrane transporters in muscle metabolism. Biochem J. 2000 Aug 1;349(Pt 3):667–688. doi: 10.1042/bj3490667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries J. E., Vork M. M., Roemen T. H., de Jong Y. F., Cleutjens J. P., van der Vusse G. J., van Bilsen M. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res. 1997 Jul;38(7):1384–1394. [PubMed] [Google Scholar]
- van der Lee K. A., Vork M. M., De Vries J. E., Willemsen P. H., Glatz J. F., Reneman R. S., Van der Vusse G. J., Van Bilsen M. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res. 2000 Jan;41(1):41–47. [PubMed] [Google Scholar]
- van der Vusse G. J., Glatz J. F., Stam H. C., Reneman R. S. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 1992 Oct;72(4):881–940. doi: 10.1152/physrev.1992.72.4.881. [DOI] [PubMed] [Google Scholar]