Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):789–798. doi: 10.1042/BJ20021660

A role for c-Jun N-terminal kinase 1 (JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and induction of the apoptotic cascade in cultured cortical neurons.

Marie P Fogarty 1, Eric J Downer 1, Veronica Campbell 1
PMCID: PMC1223321  PMID: 12534344

Abstract

beta-Amyloid (A beta) peptide has been shown to induce neuronal apoptosis; however, the mechanisms underlying A beta-induced neuronal cell death remain to be fully elucidated. The stress-activated protein kinase, c-Jun N-terminal kinase (JNK), is activated in response to cellular stress and has been identified as a proximal mediator of cell death. In the present study, expression of active JNK was increased in the nucleus and cytoplasm of A beta-treated cells. Evaluation of the nature of the JNK isoforms activated by A beta revealed a transient increase in JNK1 activity that reached its peak at 1 h and a later activation (at 24 h) of JNK2. The tumour suppressor protein, p53, is a substrate for JNK and can serve as a signalling molecule in apoptosis. In cultured cortical neurons, we found that A beta increased p53 protein expression and phosphorylation of p53 at Ser(15). Thus it appears that A beta increases p53 expression via phosphorylation-mediated stabilization of the protein. Given the lack of availability of a JNK inhibitor that can distinguish between JNK1- and JNK2-mediated effects, we employed antisense technology to deplete cells of JNK1 or JNK2 selectively. Using this strategy, the respective roles of JNK1 and JNK2 on the A beta-mediated activation of the apoptotic cascade (i.e. p53 stabilization, caspase 3 activation and DNA fragmentation) were examined. The results obtained demonstrate a role for JNK1 in the A beta-induced stabilization of p53, activation of caspase 3 and DNA fragmentation. In contrast, depletion of JNK2 had no effect on the proclivity of A beta to activate capase 3 or induce DNA fragmentation. These results demonstrate a significant role for JNK1 in A beta-mediated induction of the apoptotic cascade in cultured cortical neurons.

Full Text

The Full Text of this article is available as a PDF (258.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamec E., Vonsattel J. P., Nixon R. A. DNA strand breaks in Alzheimer's disease. Brain Res. 1999 Dec 4;849(1-2):67–77. doi: 10.1016/s0006-8993(99)02004-1. [DOI] [PubMed] [Google Scholar]
  2. Adler V., Pincus M. R., Minamoto T., Fuchs S. Y., Bluth M. J., Brandt-Rauf P. W., Friedman F. K., Robinson R. C., Chen J. M., Wang X. W. Conformation-dependent phosphorylation of p53. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1686–1691. doi: 10.1073/pnas.94.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boland Barry, Campbell Veronica. beta-Amyloid (1-40)-induced apoptosis of cultured cortical neurones involves calpain-mediated cleavage of poly-ADP-ribose polymerase. Neurobiol Aging. 2003 Jan-Feb;24(1):179–186. doi: 10.1016/s0197-4580(02)00060-x. [DOI] [PubMed] [Google Scholar]
  4. Bozyczko-Coyne D., O'Kane T. M., Wu Z. L., Dobrzanski P., Murthy S., Vaught J. L., Scott R. W. CEP-1347/KT-7515, an inhibitor of SAPK/JNK pathway activation, promotes survival and blocks multiple events associated with Abeta-induced cortical neuron apoptosis. J Neurochem. 2001 May;77(3):849–863. doi: 10.1046/j.1471-4159.2001.00294.x. [DOI] [PubMed] [Google Scholar]
  5. Culmsee C., Zhu X., Yu Q. S., Chan S. L., Camandola S., Guo Z., Greig N. H., Mattson M. P. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem. 2001 Apr;77(1):220–228. doi: 10.1046/j.1471-4159.2001.t01-1-00220.x. [DOI] [PubMed] [Google Scholar]
  6. Eilers A., Whitfield J., Shah B., Spadoni C., Desmond H., Ham J. Direct inhibition of c-Jun N-terminal kinase in sympathetic neurones prevents c-jun promoter activation and NGF withdrawal-induced death. J Neurochem. 2001 Mar;76(5):1439–1454. doi: 10.1046/j.1471-4159.2001.00150.x. [DOI] [PubMed] [Google Scholar]
  7. Fuchs S. Y., Adler V., Pincus M. R., Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10541–10546. doi: 10.1073/pnas.95.18.10541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gupta S., Barrett T., Whitmarsh A. J., Cavanagh J., Sluss H. K., Dérijard B., Davis R. J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996 Jun 3;15(11):2760–2770. [PMC free article] [PubMed] [Google Scholar]
  9. Harada J., Sugimoto M. Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res. 1999 Sep 25;842(2):311–323. doi: 10.1016/s0006-8993(99)01808-9. [DOI] [PubMed] [Google Scholar]
  10. Hreniuk D., Garay M., Gaarde W., Monia B. P., McKay R. A., Cioffi C. L. Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol. 2001 Apr;59(4):867–874. doi: 10.1124/mol.59.4.867. [DOI] [PubMed] [Google Scholar]
  11. Hu M. C., Qiu W. R., Wang Y. P. JNK1, JNK2 and JNK3 are p53 N-terminal serine 34 kinases. Oncogene. 1997 Nov 6;15(19):2277–2287. doi: 10.1038/sj.onc.1201401. [DOI] [PubMed] [Google Scholar]
  12. Inamura N., Enokido Y., Hatanaka H. Involvement of c-Jun N-terminal kinase and caspase 3-like protease in DNA damage-induced, p53-mediated apoptosis of cultured mouse cerebellar granule neurons. Brain Res. 2001 Jun 22;904(2):270–278. doi: 10.1016/s0006-8993(01)02472-6. [DOI] [PubMed] [Google Scholar]
  13. Ito Y., Mishra N. C., Yoshida K., Kharbanda S., Saxena S., Kufe D. Mitochondrial targeting of JNK/SAPK in the phorbol ester response of myeloid leukemia cells. Cell Death Differ. 2001 Aug;8(8):794–800. doi: 10.1038/sj.cdd.4400886. [DOI] [PubMed] [Google Scholar]
  14. Iwatsubo T., Odaka A., Suzuki N., Mizusawa H., Nukina N., Ihara Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron. 1994 Jul;13(1):45–53. doi: 10.1016/0896-6273(94)90458-8. [DOI] [PubMed] [Google Scholar]
  15. Jordán J., Galindo M. F., Miller R. J. Role of calpain- and interleukin-1 beta converting enzyme-like proteases in the beta-amyloid-induced death of rat hippocampal neurons in culture. J Neurochem. 1997 Apr;68(4):1612–1621. doi: 10.1046/j.1471-4159.1997.68041612.x. [DOI] [PubMed] [Google Scholar]
  16. Kitamura Y., Shimohama S., Kamoshima W., Matsuoka Y., Nomura Y., Taniguchi T. Changes of p53 in the brains of patients with Alzheimer's disease. Biochem Biophys Res Commun. 1997 Mar 17;232(2):418–421. doi: 10.1006/bbrc.1997.6301. [DOI] [PubMed] [Google Scholar]
  17. Kwon Yong-Won, Ueda Shugo, Ueno Masaya, Yodoi Junji, Masutani Hiroshi. Mechanism of p53-dependent apoptosis induced by 3-methylcholanthrene: involvement of p53 phosphorylation and p38 MAPK. J Biol Chem. 2001 Nov 12;277(3):1837–1844. doi: 10.1074/jbc.M105033200. [DOI] [PubMed] [Google Scholar]
  18. LaFerla F. M., Hall C. K., Ngo L., Jay G. Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest. 1996 Oct 1;98(7):1626–1632. doi: 10.1172/JCI118957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee J. K., Park J., Lee Y. D., Lee S. H., Han P. L. Distinct localization of SAPK isoforms in neurons of adult mouse brain implies multiple signaling modes of SAPK pathway. Brain Res Mol Brain Res. 1999 Jun 18;70(1):116–124. doi: 10.1016/s0169-328x(99)00136-9. [DOI] [PubMed] [Google Scholar]
  20. Lees-Miller S. P., Sakaguchi K., Ullrich S. J., Appella E., Anderson C. W. Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol. 1992 Nov;12(11):5041–5049. doi: 10.1128/mcb.12.11.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Y. P., Bushnell A. F., Lee C. M., Perlmutter L. S., Wong S. K. Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Res. 1996 Nov 4;738(2):196–204. doi: 10.1016/s0006-8993(96)00733-0. [DOI] [PubMed] [Google Scholar]
  22. Lu H., Taya Y., Ikeda M., Levine A. J. Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6399–6402. doi: 10.1073/pnas.95.11.6399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marchenko N. D., Zaika A., Moll U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem. 2000 May 26;275(21):16202–16212. doi: 10.1074/jbc.275.21.16202. [DOI] [PubMed] [Google Scholar]
  24. Mielke K., Damm A., Yang D. D., Herdegen T. Selective expression of JNK isoforms and stress-specific JNK activity in different neural cell lines. Brain Res Mol Brain Res. 2000 Jan 10;75(1):128–137. doi: 10.1016/s0169-328x(99)00308-3. [DOI] [PubMed] [Google Scholar]
  25. Mielke K., Herdegen T. JNK and p38 stresskinases--degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol. 2000 May;61(1):45–60. doi: 10.1016/s0301-0082(99)00042-8. [DOI] [PubMed] [Google Scholar]
  26. Miller D. L., Papayannopoulos I. A., Styles J., Bobin S. A., Lin Y. Y., Biemann K., Iqbal K. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease. Arch Biochem Biophys. 1993 Feb 15;301(1):41–52. doi: 10.1006/abbi.1993.1112. [DOI] [PubMed] [Google Scholar]
  27. Miller F. D., Pozniak C. D., Walsh G. S. Neuronal life and death: an essential role for the p53 family. Cell Death Differ. 2000 Oct;7(10):880–888. doi: 10.1038/sj.cdd.4400736. [DOI] [PubMed] [Google Scholar]
  28. Morishima Y., Gotoh Y., Zieg J., Barrett T., Takano H., Flavell R., Davis R. J., Shirasaki Y., Greenberg M. E. Beta-amyloid induces neuronal apoptosis via a mechanism that involves the c-Jun N-terminal kinase pathway and the induction of Fas ligand. J Neurosci. 2001 Oct 1;21(19):7551–7560. doi: 10.1523/JNEUROSCI.21-19-07551.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nakajima-Iijima S., Hamada H., Reddy P., Kakunaga T. Molecular structure of the human cytoplasmic beta-actin gene: interspecies homology of sequences in the introns. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6133–6137. doi: 10.1073/pnas.82.18.6133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oren M. Relationship of p53 to the control of apoptotic cell death. Semin Cancer Biol. 1994 Jun;5(3):221–227. [PubMed] [Google Scholar]
  31. Pena E., Berciano M. T., Fernandez R., Crespo P., Lafarga M. Stress-induced activation of c-Jun N-terminal kinase in sensory ganglion neurons: accumulation in nuclear domains enriched in splicing factors and distribution in perichromatin fibrils. Exp Cell Res. 2000 Apr 10;256(1):179–191. doi: 10.1006/excr.2000.4814. [DOI] [PubMed] [Google Scholar]
  32. Sakaguchi K., Sakamoto H., Lewis M. S., Anderson C. W., Erickson J. W., Appella E., Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 1997 Aug 19;36(33):10117–10124. doi: 10.1021/bi970759w. [DOI] [PubMed] [Google Scholar]
  33. Selznick L. A., Holtzman D. M., Han B. H., Gökden M., Srinivasan A. N., Johnson E. M., Jr, Roth K. A. In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J Neuropathol Exp Neurol. 1999 Sep;58(9):1020–1026. doi: 10.1097/00005072-199909000-00012. [DOI] [PubMed] [Google Scholar]
  34. Shieh S. Y., Ikeda M., Taya Y., Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997 Oct 31;91(3):325–334. doi: 10.1016/s0092-8674(00)80416-x. [DOI] [PubMed] [Google Scholar]
  35. Suo Z., Fang C., Crawford F., Mullan M. Superoxide free radical and intracellular calcium mediate A beta(1-42) induced endothelial toxicity. Brain Res. 1997 Jul 11;762(1-2):144–152. doi: 10.1016/s0006-8993(97)00383-1. [DOI] [PubMed] [Google Scholar]
  36. Troy C. M., Rabacchi S. A., Friedman W. J., Frappier T. F., Brown K., Shelanski M. L. Caspase-2 mediates neuronal cell death induced by beta-amyloid. J Neurosci. 2000 Feb 15;20(4):1386–1392. doi: 10.1523/JNEUROSCI.20-04-01386.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Troy C. M., Rabacchi S. A., Xu Z., Maroney A. C., Connors T. J., Shelanski M. L., Greene L. A. beta-Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. J Neurochem. 2001 Apr;77(1):157–164. doi: 10.1046/j.1471-4159.2001.t01-1-00218.x. [DOI] [PubMed] [Google Scholar]
  38. Unger T., Sionov R. V., Moallem E., Yee C. L., Howley P. M., Oren M., Haupt Y. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene. 1999 May 27;18(21):3205–3212. doi: 10.1038/sj.onc.1202656. [DOI] [PubMed] [Google Scholar]
  39. Wang J., Friedman E. Downregulation of p53 by sustained JNK activation during apoptosis. Mol Carcinog. 2000 Nov;29(3):179–188. doi: 10.1002/1098-2744(200011)29:3<179::aid-mc7>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  40. Wang Y., Eckhart W. Phosphorylation sites in the amino-terminal region of mouse p53. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4231–4235. doi: 10.1073/pnas.89.10.4231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. White A. R., Guirguis R., Brazier M. W., Jobling M. F., Hill A. F., Beyreuther K., Barrow C. J., Masters C. L., Collins S. J., Cappai R. Sublethal concentrations of prion peptide PrP106-126 or the amyloid beta peptide of Alzheimer's disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol Dis. 2001 Apr;8(2):299–316. doi: 10.1006/nbdi.2001.0386. [DOI] [PubMed] [Google Scholar]
  42. Yan X., Xiao R., Dou Y., Wang S., Qiao Z., Qiao J. Carbachol blocks beta-amyloid fragment 31-35-induced apoptosis in cultured cortical neurons. Brain Res Bull. 2000 Apr;51(6):465–470. doi: 10.1016/s0361-9230(99)00255-5. [DOI] [PubMed] [Google Scholar]
  43. Yang D. D., Kuan C. Y., Whitmarsh A. J., Rincón M., Zheng T. S., Davis R. J., Rakic P., Flavell R. A. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature. 1997 Oct 23;389(6653):865–870. doi: 10.1038/39899. [DOI] [PubMed] [Google Scholar]
  44. Yoshizumi Masanori, Kogame Toshiaki, Suzaki Yuki, Fujita Yoshiko, Kyaw Moe, Kirima Kazuyoshi, Ishizawa Keisuke, Tsuchiya Koichiro, Kagami Shoji, Tamaki Toshiaki. Ebselen attenuates oxidative stress-induced apoptosis via the inhibition of the c-Jun N-terminal kinase and activator protein-1 signalling pathway in PC12 cells. Br J Pharmacol. 2002 Aug;136(7):1023–1032. doi: 10.1038/sj.bjp.0704808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang Yan, McLaughlin Richard, Goodyer Cynthia, LeBlanc Andréa. Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol. 2002 Jan 28;156(3):519–529. doi: 10.1083/jcb.200110119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zhu X., Raina A. K., Rottkamp C. A., Aliev G., Perry G., Boux H., Smith M. A. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem. 2001 Jan;76(2):435–441. doi: 10.1046/j.1471-4159.2001.00046.x. [DOI] [PubMed] [Google Scholar]
  47. Zhu Yonghua, Mao Xiao Ou, Sun Yunjuan, Xia Zhengui, Greenberg David A. p38 Mitogen-activated protein kinase mediates hypoxic regulation of Mdm2 and p53 in neurons. J Biol Chem. 2002 Apr 10;277(25):22909–22914. doi: 10.1074/jbc.M200042200. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES