Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):843–855. doi: 10.1042/BJ20021816

Identification and characterization of a prostate-specific androgen-independent protein-binding site in the probasin promoter.

Lillian H Y Yeung 1, Jason T Read 1, Pernille Sorenson 1, Colleen C Nelson 1, William Jia 1, Paul S Rennie 1
PMCID: PMC1223328  PMID: 12540291

Abstract

In this study we investigated the combination of transcription factors and proteins binding to the proximal part of the prostate-specific probasin (PB) promoter. Using DNaseI in vitro footprinting, several protected regions were identified on the proximal PB promoter (nucleotides -286 to +28 relative to the transcription start site) when nuclear extracts from LNCaP, a human prostate cancer cell line, were used. Four of the protected areas were observed only when LNCaP nuclear extracts treated with synthetic androgen (10 nM R1881) were used. Two other regions, referred to as FPI and FPII, showed protection regardless of the presence or absence of androgen. When DNaseI footprinting was done using other prostate and non-prostate nuclear extracts, protection of the FPII region was only seen in prostate cell lines. These androgen-independent regions were further tested for tissue and binding specificity using the electrophoretic mobility-shift assay. Eight complexes formed with the FPI probe while four complexes were observed with the FPII probe on incubation with the tested nuclear extracts. Methylation protection assays reveal that prostate cancer cell lines yield slightly different protection patterns for some of the protein complexes formed with non-prostate-derived cell lines, suggesting the presence of prostate-enriched or -exclusive proteins. Site-directed mutagenesis of the protected nucleotides within FPII resulted in a significant reduction in expression from the PB promoter. Identification of proteins binding to the FPII region revealed the participation of nuclear factor I (NF-I) or a closely related protein, although other unknown proteins are also involved. Defining the DNA and protein components that dictate prostate-specific expression of the PB promoter in an androgen-independent manner would provide a strong basis for the design and development of a gene therapy for systemic treatment of androgen-independent prostate cancer.

Full Text

The Full Text of this article is available as a PDF (348.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behrens M., Venkatraman G., Gronostajski R. M., Reed R. R., Margolis F. L. NFI in the development of the olfactory neuroepithelium and the regulation of olfactory marker protein gene expression. Eur J Neurosci. 2000 Apr;12(4):1372–1384. doi: 10.1046/j.1460-9568.2000.00032.x. [DOI] [PubMed] [Google Scholar]
  2. Brookes D. E., Zandvliet D., Watt F., Russell P. J., Molloy P. L. Relative activity and specificity of promoters from prostate-expressed genes. Prostate. 1998 Apr 1;35(1):18–26. doi: 10.1002/(sici)1097-0045(19980401)35:1<18::aid-pros3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  3. Chaudhry A. Z., Lyons G. E., Gronostajski R. M. Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn. 1997 Mar;208(3):313–325. doi: 10.1002/(SICI)1097-0177(199703)208:3<313::AID-AJA3>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  4. Chaudhry A. Z., Vitullo A. D., Gronostajski R. M. Nuclear factor I (NFI) isoforms differentially activate simple versus complex NFI-responsive promoters. J Biol Chem. 1998 Jul 17;273(29):18538–18546. doi: 10.1074/jbc.273.29.18538. [DOI] [PubMed] [Google Scholar]
  5. Claessens F., Rushmere N. K., Davies P., Celis L., Peeters B., Rombauts W. A. Sequence-specific binding of androgen-receptor complexes to prostatic binding protein genes. Mol Cell Endocrinol. 1990 Dec 21;74(3):203–212. doi: 10.1016/0303-7207(90)90225-w. [DOI] [PubMed] [Google Scholar]
  6. Cleutjens K. B., van Eekelen C. C., van der Korput H. A., Brinkmann A. O., Trapman J. Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem. 1996 Mar 15;271(11):6379–6388. doi: 10.1074/jbc.271.11.6379. [DOI] [PubMed] [Google Scholar]
  7. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gounari F., De Francesco R., Schmitt J., van der Vliet P., Cortese R., Stunnenberg H. Amino-terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J. 1990 Feb;9(2):559–566. doi: 10.1002/j.1460-2075.1990.tb08143.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Greenberg N. M., DeMayo F. J., Sheppard P. C., Barrios R., Lebovitz R., Finegold M., Angelopoulou R., Dodd J. G., Duckworth M. L., Rosen J. M. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol Endocrinol. 1994 Feb;8(2):230–239. doi: 10.1210/mend.8.2.8170479. [DOI] [PubMed] [Google Scholar]
  10. Gronostajski R. M. Analysis of nuclear factor I binding to DNA using degenerate oligonucleotides. Nucleic Acids Res. 1986 Nov 25;14(22):9117–9132. doi: 10.1093/nar/14.22.9117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gronostajski R. M. Roles of the NFI/CTF gene family in transcription and development. Gene. 2000 May 16;249(1-2):31–45. doi: 10.1016/s0378-1119(00)00140-2. [DOI] [PubMed] [Google Scholar]
  12. Howe K. M., Watson R. J. Nucleotide preferences in sequence-specific recognition of DNA by c-myb protein. Nucleic Acids Res. 1991 Jul 25;19(14):3913–3919. doi: 10.1093/nar/19.14.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jemal Ahmedin, Thomas Andrea, Murray Taylor, Thun Michael. Cancer statistics, 2002. CA Cancer J Clin. 2002 Jan-Feb;52(1):23–47. doi: 10.3322/canjclin.52.1.23. [DOI] [PubMed] [Google Scholar]
  14. Jones K. A., Kadonaga J. T., Rosenfeld P. J., Kelly T. J., Tjian R. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell. 1987 Jan 16;48(1):79–89. doi: 10.1016/0092-8674(87)90358-8. [DOI] [PubMed] [Google Scholar]
  15. Kanei-Ishii C., Sarai A., Sawazaki T., Nakagoshi H., He D. N., Ogata K., Nishimura Y., Ishii S. The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the myb protooncogene product. J Biol Chem. 1990 Nov 15;265(32):19990–19995. [PubMed] [Google Scholar]
  16. Kasper S., Matusik R. J. Rat probasin: structure and function of an outlier lipocalin. Biochim Biophys Acta. 2000 Oct 18;1482(1-2):249–258. doi: 10.1016/s0167-4838(00)00170-9. [DOI] [PubMed] [Google Scholar]
  17. Kasper S., Rennie P. S., Bruchovsky N., Sheppard P. C., Cheng H., Lin L., Shiu R. P., Snoek R., Matusik R. J. Cooperative binding of androgen receptors to two DNA sequences is required for androgen induction of the probasin gene. J Biol Chem. 1994 Dec 16;269(50):31763–31769. [PubMed] [Google Scholar]
  18. Kruse U., Sippel A. E. The genes for transcription factor nuclear factor I give rise to corresponding splice variants between vertebrate species. J Mol Biol. 1994 May 20;238(5):860–865. doi: 10.1006/jmbi.1994.1343. [DOI] [PubMed] [Google Scholar]
  19. Liu Y., Bernard H. U., Apt D. NFI-B3, a novel transcriptional repressor of the nuclear factor I family, is generated by alternative RNA processing. J Biol Chem. 1997 Apr 18;272(16):10739–10745. doi: 10.1074/jbc.272.16.10739. [DOI] [PubMed] [Google Scholar]
  20. Makover D., Cuddy M., Yum S., Bradley K., Alpers J., Sukhatme V., Reed J. C. Phorbol ester-mediated inhibition of growth and regulation of proto-oncogene expression in the human T cell leukemia line JURKAT. Oncogene. 1991 Mar;6(3):455–460. [PubMed] [Google Scholar]
  21. Mermod N., O'Neill E. A., Kelly T. J., Tjian R. The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell. 1989 Aug 25;58(4):741–753. doi: 10.1016/0092-8674(89)90108-6. [DOI] [PubMed] [Google Scholar]
  22. Nagata K., Guggenheimer R. A., Hurwitz J. Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6177–6181. doi: 10.1073/pnas.80.20.6177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakagoshi H., Nagase T., Kanei-Ishii C., Ueno Y., Ishii S. Binding of the c-myb proto-oncogene product to the simian virus 40 enhancer stimulates transcription. J Biol Chem. 1990 Feb 25;265(6):3479–3483. [PubMed] [Google Scholar]
  24. Nicot C., Mahieux R., Opavsky R., Cereseto A., Wolff L., Brady J. N., Franchini G. HTLV-I Tax transrepresses the human c-Myb promoter independently of its interaction with CBP or p300. Oncogene. 2000 Apr 20;19(17):2155–2164. doi: 10.1038/sj.onc.1203536. [DOI] [PubMed] [Google Scholar]
  25. Norquay L. D., Jin Y., Surabhi R. M., Gietz R. D., Tanese N., Cattini P. A. A member of the nuclear factor-1 family is involved in the pituitary repression of the human placental growth hormone genes. Biochem J. 2001 Mar 1;354(Pt 2):387–395. doi: 10.1042/0264-6021:3540387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Osada S., Daimon S., Nishihara T., Imagawa M. Identification of DNA binding-site preferences for nuclear factor I-A. FEBS Lett. 1996 Jul 15;390(1):44–46. doi: 10.1016/0014-5793(96)00622-9. [DOI] [PubMed] [Google Scholar]
  27. Reid K. J., Hendy S. C., Saito J., Sorensen P., Nelson C. C. Two classes of androgen receptor elements mediate cooperativity through allosteric interactions. J Biol Chem. 2000 Oct 30;276(4):2943–2952. doi: 10.1074/jbc.M009170200. [DOI] [PubMed] [Google Scholar]
  28. Reid K. J., Nelson C. C. Improved methylation protection-based DNA footprinting to reveal structural distortion of DNA upon transcription factor binding. Biotechniques. 2001 Jan;30(1):20–22. doi: 10.2144/01301bm01. [DOI] [PubMed] [Google Scholar]
  29. Rennie P. S., Bruchovsky N., Leco K. J., Sheppard P. C., McQueen S. A., Cheng H., Snoek R., Hamel A., Bock M. E., MacDonald B. S. Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol. 1993 Jan;7(1):23–36. doi: 10.1210/mend.7.1.8446105. [DOI] [PubMed] [Google Scholar]
  30. Riegman P. H., Vlietstra R. J., van der Korput J. A., Brinkmann A. O., Trapman J. The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Mol Endocrinol. 1991 Dec;5(12):1921–1930. doi: 10.1210/mend-5-12-1921. [DOI] [PubMed] [Google Scholar]
  31. Roulet E., Bucher P., Schneider R., Wingender E., Dusserre Y., Werner T., Mermod N. Experimental analysis and computer prediction of CTF/NFI transcription factor DNA binding sites. J Mol Biol. 2000 Apr 7;297(4):833–848. doi: 10.1006/jmbi.2000.3614. [DOI] [PubMed] [Google Scholar]
  32. Rushmere N. K., Parker M. G., Davies P. Androgen receptor-binding regions of an androgen-responsive gene. Mol Cell Endocrinol. 1987 Jun;51(3):259–265. doi: 10.1016/0303-7207(87)90036-0. [DOI] [PubMed] [Google Scholar]
  33. Santoro C., Mermod N., Andrews P. C., Tjian R. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNAs. Nature. 1988 Jul 21;334(6179):218–224. doi: 10.1038/334218a0. [DOI] [PubMed] [Google Scholar]
  34. Wuarin J., Mueller C., Schibler U. A ubiquitous CCAAT factor is required for efficient in vitro transcription from the mouse albumin promoter. J Mol Biol. 1990 Aug 20;214(4):865–874. doi: 10.1016/0022-2836(90)90341-I. [DOI] [PubMed] [Google Scholar]
  35. Yan Y., Sheppard P. C., Kasper S., Lin L., Hoare S., Kapoor A., Dodd J. G., Duckworth M. L., Matusik R. J. Large fragment of the probasin promoter targets high levels of transgene expression to the prostate of transgenic mice. Prostate. 1997 Jul 1;32(2):129–139. doi: 10.1002/(sici)1097-0045(19970701)32:2<129::aid-pros8>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  36. Zhang J., Thomas T. Z., Kasper S., Matusik R. J. A small composite probasin promoter confers high levels of prostate-specific gene expression through regulation by androgens and glucocorticoids in vitro and in vivo. Endocrinology. 2000 Dec;141(12):4698–4710. doi: 10.1210/endo.141.12.7837. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES