Abstract
Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3-kinase/Akt-dependent GSK-3 beta inactivation as well as phosphoinositide 3-kinase-independent PP-1 activation.
Full Text
The Full Text of this article is available as a PDF (288.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aschenbach W. G., Suzuki Y., Breeden K., Prats C., Hirshman M. F., Dufresne S. D., Sakamoto K., Vilardo P. G., Steele M., Kim J. H. The muscle-specific protein phosphatase PP1G/R(GL)(G(M))is essential for activation of glycogen synthase by exercise. J Biol Chem. 2001 Aug 24;276(43):39959–39967. doi: 10.1074/jbc.M105518200. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brautigan D. L., Khatra B. S., Soderling T. R., Fischer E. H. Dephosphorylation of skeletal muscle phosphorylase, glycogen synthase, and phosphorylase kinase beta-subunit by a Mn2+-activated protein phosphatase. Arch Biochem Biophys. 1982 Nov;219(1):228–235. doi: 10.1016/0003-9861(82)90153-9. [DOI] [PubMed] [Google Scholar]
- Brooks G. A., Hittelman K. J., Faulkner J. A., Beyer R. E. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am J Physiol. 1971 Apr;220(4):1053–1059. doi: 10.1152/ajplegacy.1971.220.4.1053. [DOI] [PubMed] [Google Scholar]
- Brooks G. A., Hittelman K. J., Faulkner J. A., Beyer R. E. Tissue temperatures and whole-animal oxygen consumption after exercise. Am J Physiol. 1971 Aug;221(2):427–431. doi: 10.1152/ajplegacy.1971.221.2.427. [DOI] [PubMed] [Google Scholar]
- Chu B., Soncin F., Price B. D., Stevenson M. A., Calderwood S. K. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem. 1996 Nov 29;271(48):30847–30857. doi: 10.1074/jbc.271.48.30847. [DOI] [PubMed] [Google Scholar]
- Chu B., Zhong R., Soncin F., Stevenson M. A., Calderwood S. K. Transcriptional activity of heat shock factor 1 at 37 degrees C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Calpha and Czeta. J Biol Chem. 1998 Jul 17;273(29):18640–18646. doi: 10.1074/jbc.273.29.18640. [DOI] [PubMed] [Google Scholar]
- Dent P., Campbell D. G., Caudwell F. B., Cohen P. Identification of three in vivo phosphorylation sites on the glycogen-binding subunit of protein phosphatase 1 from rabbit skeletal muscle, and their response to adrenaline. FEBS Lett. 1990 Jan 1;259(2):281–285. doi: 10.1016/0014-5793(90)80027-g. [DOI] [PubMed] [Google Scholar]
- Dent P., Lavoinne A., Nakielny S., Caudwell F. B., Watt P., Cohen P. The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature. 1990 Nov 22;348(6299):302–308. doi: 10.1038/348302a0. [DOI] [PubMed] [Google Scholar]
- Febbraio M. A., Carey M. F., Snow R. J., Stathis C. G., Hargreaves M. Influence of elevated muscle temperature on metabolism during intense, dynamic exercise. Am J Physiol. 1996 Nov;271(5 Pt 2):R1251–R1255. doi: 10.1152/ajpregu.1996.271.5.R1251. [DOI] [PubMed] [Google Scholar]
- Febbraio M. A., Koukoulas I. HSP72 gene expression progressively increases in human skeletal muscle during prolonged, exhaustive exercise. J Appl Physiol (1985) 2000 Sep;89(3):1055–1060. doi: 10.1152/jappl.2000.89.3.1055. [DOI] [PubMed] [Google Scholar]
- Febbraio M. A., Snow R. J., Stathis C. G., Hargreaves M., Carey M. F. Blunting the rise in body temperature reduces muscle glycogenolysis during exercise in humans. Exp Physiol. 1996 Jul;81(4):685–693. doi: 10.1113/expphysiol.1996.sp003969. [DOI] [PubMed] [Google Scholar]
- Febbraio Mark A., Steensberg Adam, Walsh Rory, Koukoulas Irene, van Hall Gerrit, Saltin Bengt, Pedersen Bente Klarlund. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle. J Physiol. 2002 Feb 1;538(Pt 3):911–917. doi: 10.1113/jphysiol.2001.013145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guttman S. D., Glover C. V., Allis C. D., Gorovsky M. A. Heat shock, deciliation and release from anoxia induce the synthesis of the same set of polypeptides in starved T. pyriformis. Cell. 1980 Nov;22(1 Pt 1):299–307. doi: 10.1016/0092-8674(80)90177-4. [DOI] [PubMed] [Google Scholar]
- He B., Meng Y. H., Mivechi N. F. Glycogen synthase kinase 3beta and extracellular signal-regulated kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol Cell Biol. 1998 Nov;18(11):6624–6633. doi: 10.1128/mcb.18.11.6624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins Gary M., Cowart L. Ashley, Signorelli Paola, Pettus Benjamin J., Chalfant Charles E., Hannun Yusuf A. Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins. J Biol Chem. 2002 Aug 27;277(45):42572–42578. doi: 10.1074/jbc.M207346200. [DOI] [PubMed] [Google Scholar]
- Joyeux M., Arnaud C., Richard M. J., Yellon D. M., Demenge P., Ribuot C. Effect of okadaic acid, a protein phosphatase inhibitor, on heat stress-induced HSP72 synthesis and thermotolerance. Cardiovasc Drugs Ther. 2000 Aug;14(4):441–446. doi: 10.1023/a:1007824502285. [DOI] [PubMed] [Google Scholar]
- Kurucz Istvan, Morva Agota, Vaag Allan, Eriksson Karl-Fredrik, Huang Xudong, Groop Leif, Koranyi Laszlo. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes. 2002 Apr;51(4):1102–1109. doi: 10.2337/diabetes.51.4.1102. [DOI] [PubMed] [Google Scholar]
- Lin J. T., Lis J. T. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae. Mol Cell Biol. 1999 May;19(5):3237–3245. doi: 10.1128/mcb.19.5.3237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu J., Brautigan D. L. Glycogen synthase association with the striated muscle glycogen-targeting subunit of protein phosphatase-1. Synthase activation involves scaffolding regulated by beta-adrenergic signaling. J Biol Chem. 2000 Aug 25;275(34):26074–26081. doi: 10.1074/jbc.M003843200. [DOI] [PubMed] [Google Scholar]
- MacKintosh C., Campbell D. G., Hiraga A., Cohen P. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G in response to adrenalin. FEBS Lett. 1988 Jul 4;234(1):189–194. doi: 10.1016/0014-5793(88)81331-0. [DOI] [PubMed] [Google Scholar]
- McDowell J. H., Robinson P. R., Miller R. L., Brannock M. T., Arendt A., Smith W. C., Hargrave P. A. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin. Invest Ophthalmol Vis Sci. 2001 Jun;42(7):1439–1443. [PubMed] [Google Scholar]
- Milne Kevin J., Noble Earl G. Exercise-induced elevation of HSP70 is intensity dependent. J Appl Physiol (1985) 2002 Aug;93(2):561–568. doi: 10.1152/japplphysiol.00528.2001. [DOI] [PubMed] [Google Scholar]
- Mivechi N. F., Trainor L. D., Hahn G. M. Purified mammalian HSP-70 KDA activates phosphoprotein phosphatases in vitro. Biochem Biophys Res Commun. 1993 Apr 30;192(2):954–963. doi: 10.1006/bbrc.1993.1508. [DOI] [PubMed] [Google Scholar]
- Mizzen L. A., Welch W. J. Characterization of the thermotolerant cell. I. Effects on protein synthesis activity and the regulation of heat-shock protein 70 expression. J Cell Biol. 1988 Apr;106(4):1105–1116. doi: 10.1083/jcb.106.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puntschart A., Vogt M., Widmer H. R., Hoppeler H., Billeter R. Hsp70 expression in human skeletal muscle after exercise. Acta Physiol Scand. 1996 Aug;157(4):411–417. doi: 10.1046/j.1365-201X.1996.512270000.x. [DOI] [PubMed] [Google Scholar]
- Ragolia L., Begum N. Protein phosphatase-1 and insulin action. Mol Cell Biochem. 1998 May;182(1-2):49–58. [PubMed] [Google Scholar]
- Ragolia L., Begum N. The effect of modulating the glycogen-associated regulatory subunit of protein phosphatase-1 on insulin action in rat skeletal muscle cells. Endocrinology. 1997 Jun;138(6):2398–2404. doi: 10.1210/endo.138.6.5194. [DOI] [PubMed] [Google Scholar]
- Ragolia L., Cherpalis B., Srinivasan M., Begum N. Role of serine/threonine protein phosphatases in insulin regulation of Na+/K+-ATPase activity in cultured rat skeletal muscle cells. J Biol Chem. 1997 Sep 19;272(38):23653–23658. doi: 10.1074/jbc.272.38.23653. [DOI] [PubMed] [Google Scholar]
- Ragolia L., Duddy N., Begum N. Effect of an Asp905Tyr mutation of the glycogen-associated regulatory subunit of protein phosphatase-1 on the regulation of glycogen synthesis by insulin and cyclic adenosine 3',5'-monophosphate agonists. Mol Endocrinol. 1999 Oct;13(10):1773–1783. doi: 10.1210/mend.13.10.0354. [DOI] [PubMed] [Google Scholar]
- Ryan A. J., Gisolfi C. V., Moseley P. L. Synthesis of 70K stress protein by human leukocytes: effect of exercise in the heat. J Appl Physiol (1985) 1991 Jan;70(1):466–471. doi: 10.1152/jappl.1991.70.1.466. [DOI] [PubMed] [Google Scholar]
- Salo D. C., Donovan C. M., Davies K. J. HSP70 and other possible heat shock or oxidative stress proteins are induced in skeletal muscle, heart, and liver during exercise. Free Radic Biol Med. 1991;11(3):239–246. doi: 10.1016/0891-5849(91)90119-n. [DOI] [PubMed] [Google Scholar]
- Sandu O. A., Ito M., Begum N. Selected contribution: insulin utilizes NO/cGMP pathway to activate myosin phosphatase via Rho inhibition in vascular smooth muscle. J Appl Physiol (1985) 2001 Sep;91(3):1475–1482. doi: 10.1152/jappl.2001.91.3.1475. [DOI] [PubMed] [Google Scholar]
- Sato S., Fujita N., Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10832–10837. doi: 10.1073/pnas.170276797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sciandra J. J., Subjeck J. R. The effects of glucose on protein synthesis and thermosensitivity in Chinese hamster ovary cells. J Biol Chem. 1983 Oct 25;258(20):12091–12093. [PubMed] [Google Scholar]
- Skidmore R., Gutierrez J. A., Guerriero V., Jr, Kregel K. C. HSP70 induction during exercise and heat stress in rats: role of internal temperature. Am J Physiol. 1995 Jan;268(1 Pt 2):R92–R97. doi: 10.1152/ajpregu.1995.268.1.R92. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Srinivasan M., Begum N. Regulation of protein phosphatase 1 and 2A activities by insulin during myogenesis in rat skeletal muscle cells in culture. J Biol Chem. 1994 Apr 29;269(17):12514–12520. [PubMed] [Google Scholar]
- Suzuki Y., Lanner C., Kim J. H., Vilardo P. G., Zhang H., Yang J., Cooper L. D., Steele M., Kennedy A., Bock C. B. Insulin control of glycogen metabolism in knockout mice lacking the muscle-specific protein phosphatase PP1G/RGL. Mol Cell Biol. 2001 Apr;21(8):2683–2694. doi: 10.1128/MCB.21.8.2683-2694.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terlecky S. R., Chiang H. L., Olson T. S., Dice J. F. Protein and peptide binding and stimulation of in vitro lysosomal proteolysis by the 73-kDa heat shock cognate protein. J Biol Chem. 1992 May 5;267(13):9202–9209. [PubMed] [Google Scholar]
- Walker K. S., Watt P. W., Cohen P. Phosphorylation of the skeletal muscle glycogen-targetting subunit of protein phosphatase 1 in response to adrenaline in vivo. FEBS Lett. 2000 Jan 21;466(1):121–124. doi: 10.1016/s0014-5793(99)01771-8. [DOI] [PubMed] [Google Scholar]
- Wallen E. S., Buettner G. R., Moseley P. L. Oxidants differentially regulate the heat shock response. Int J Hyperthermia. 1997 Sep-Oct;13(5):517–524. doi: 10.3109/02656739709023550. [DOI] [PubMed] [Google Scholar]
- Weitzel G., Pilatus U., Rensing L. Similar dose response of heat shock protein synthesis and intracellular pH change in yeast. Exp Cell Res. 1985 Jul;159(1):252–256. doi: 10.1016/s0014-4827(85)80054-9. [DOI] [PubMed] [Google Scholar]
- Welch W. J., Garrels J. I., Thomas G. P., Lin J. J., Feramisco J. R. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J Biol Chem. 1983 Jun 10;258(11):7102–7111. [PubMed] [Google Scholar]
- White Morris F. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002 Sep;283(3):E413–E422. doi: 10.1152/ajpendo.00514.2001. [DOI] [PubMed] [Google Scholar]
- Wojtaszewski Jørgen F. P., Nielsen Jakob N., Richter Erik A. Invited review: effect of acute exercise on insulin signaling and action in humans. J Appl Physiol (1985) 2002 Jul;93(1):384–392. doi: 10.1152/japplphysiol.00043.2002. [DOI] [PubMed] [Google Scholar]
- Yamamoto-Honda R., Honda Z., Kaburagi Y., Ueki K., Kimura S., Akanuma Y., Kadowaki T. Overexpression of the glycogen targeting (G(M)) subunit of protein phosphatase-1. Biochem Biophys Res Commun. 2000 Sep 7;275(3):859–864. doi: 10.1006/bbrc.2000.3391. [DOI] [PubMed] [Google Scholar]
- Zachayus J. L., Plas C. Effects of mild heat shock on glycogenesis and its regulation by insulin in cultured fetal hepatocytes. J Cell Physiol. 1995 Mar;162(3):330–340. doi: 10.1002/jcp.1041620305. [DOI] [PubMed] [Google Scholar]