Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):675–686. doi: 10.1042/BJ20021585

Upstream stimulatory factor (USF) and neurogenic differentiation/beta-cell E box transactivator 2 (NeuroD/BETA2) contribute to islet-specific glucose-6-phosphatase catalytic-subunit-related protein (IGRP) gene expression.

Cyrus C Martin 1, Christina A Svitek 1, James K Oeser 1, Eva Henderson 1, Roland Stein 1, Richard M O'Brien 1
PMCID: PMC1223330  PMID: 12540293

Abstract

Islet-specific glucose-6-phosphatase (G6Pase) catalytic-subunit-related protein (IGRP) is a homologue of the catalytic subunit of G6Pase, the enzyme that catalyses the final step of the gluconeogenic pathway. The analysis of IGRP-chloramphenicol acetyltransferase (CAT) fusion-gene expression through transient transfection of islet-derived beta TC-3 cells revealed that multiple promoter regions, located between -306 and -97, are required for maximal IGRP-CAT fusion-gene expression. These regions correlated with trans -acting factor-binding sites in the IGRP promoter that were identified in beta TC-3 cells in situ using the ligation-mediated PCR (LMPCR) footprinting technique. However, the LMPCR data also revealed additional trans -acting factor-binding sites located between -97 and +1 that overlap two E-box motifs, even though this region by itself conferred minimal fusion-gene expression. The data presented here show that these E-box motifs are important for IGRP promoter activity, but that their action is only manifest in the presence of distal promoter elements. Thus mutation of either E-box motif in the context of the -306 to +3 IGRP promoter region reduces fusion-gene expression. These two E-box motifs have distinct sequences and preferentially bind NeuroD/BETA2 (neurogenic differentiation/beta-cell E box transactivator 2) and upstream stimulatory factor (USF) in vitro, consistent with the binding of both factors to the IGRP promoter in situ, as determined using the chromatin-immunoprecipitation (ChIP) assay. Based on experiments using mutated IGRP promoter constructs, we propose a model to explain how the ubiquitously expressed USF could contribute to islet-specific IGRP gene expression.

Full Text

The Full Text of this article is available as a PDF (297.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlgren U., Jonsson J., Jonsson L., Simu K., Edlund H. beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 1998 Jun 15;12(12):1763–1768. doi: 10.1101/gad.12.12.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arden S. D., Zahn T., Steegers S., Webb S., Bergman B., O'Brien R. M., Hutton J. C. Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. Diabetes. 1999 Mar;48(3):531–542. doi: 10.2337/diabetes.48.3.531. [DOI] [PubMed] [Google Scholar]
  3. Arnold H. H., Winter B. Muscle differentiation: more complexity to the network of myogenic regulators. Curr Opin Genet Dev. 1998 Oct;8(5):539–544. doi: 10.1016/s0959-437x(98)80008-7. [DOI] [PubMed] [Google Scholar]
  4. Bendall A. J., Molloy P. L. Base preferences for DNA binding by the bHLH-Zip protein USF: effects of MgCl2 on specificity and comparison with binding of Myc family members. Nucleic Acids Res. 1994 Jul 25;22(14):2801–2810. doi: 10.1093/nar/22.14.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bischof L. J., Martin C. C., Svitek C. A., Stadelmaier B. T., Hornbuckle L. A., Goldman J. K., Oeser J. K., Hutton J. C., O'Brien R. M. Characterization of the mouse islet-specific glucose-6-phosphatase catalytic subunit-related protein gene promoter by in situ footprinting: correlation with fusion gene expression in the islet-derived betaTC-3 and hamster insulinoma tumor cell lines. Diabetes. 2001 Mar;50(3):502–514. doi: 10.2337/diabetes.50.3.502. [DOI] [PubMed] [Google Scholar]
  6. Bramblett D. E., Huang H. P., Tsai M. J. Pancreatic islet development. Adv Pharmacol. 2000;47:255–315. doi: 10.1016/s1054-3589(08)60114-3. [DOI] [PubMed] [Google Scholar]
  7. Chapman S. C., Ayala J. E., Streeper R. S., Culbert A. A., Eaton E. M., Svitek C. A., Goldman J. K., Tavar J. M., O'Brien R. M. Multiple promoter elements are required for the stimulatory effect of insulin on human collagenase-1 gene transcription. Selective effects on activator protein-1 expression may explain the quantitative difference in insulin and phorbol ester action. J Biol Chem. 1999 Jun 25;274(26):18625–18634. doi: 10.1074/jbc.274.26.18625. [DOI] [PubMed] [Google Scholar]
  8. Cordier-Bussat M., Morel C., Philippe J. Homologous DNA sequences and cellular factors are implicated in the control of glucagon and insulin gene expression. Mol Cell Biol. 1995 Jul;15(7):3904–3916. doi: 10.1128/mcb.15.7.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dang C. V., Dolde C., Gillison M. L., Kato G. J. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):599–602. doi: 10.1073/pnas.89.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dumonteil E., Laser B., Constant I., Philippe J. Differential regulation of the glucagon and insulin I gene promoters by the basic helix-loop-helix transcription factors E47 and BETA2. J Biol Chem. 1998 Aug 7;273(32):19945–19954. doi: 10.1074/jbc.273.32.19945. [DOI] [PubMed] [Google Scholar]
  11. Ebert D. H., Bischof L. J., Streeper R. S., Chapman S. C., Svitek C. A., Goldman J. K., Mathews C. E., Leiter E. H., Hutton J. C., O'Brien R. M. Structure and promoter activity of an islet-specific glucose-6-phosphatase catalytic subunit-related gene. Diabetes. 1999 Mar;48(3):543–551. doi: 10.2337/diabetes.48.3.543. [DOI] [PubMed] [Google Scholar]
  12. Gaudet J., Mango S. E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science. 2002 Feb 1;295(5556):821–825. doi: 10.1126/science.1065175. [DOI] [PubMed] [Google Scholar]
  13. German M. S., Moss L. G., Wang J., Rutter W. J. The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes. Mol Cell Biol. 1992 Apr;12(4):1777–1788. doi: 10.1128/mcb.12.4.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. German M. S., Wang J. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol Cell Biol. 1994 Jun;14(6):4067–4075. doi: 10.1128/mcb.14.6.4067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gerrish K., Cissell M. A., Stein R. The role of hepatic nuclear factor 1 alpha and PDX-1 in transcriptional regulation of the pdx-1 gene. J Biol Chem. 2001 Oct 5;276(51):47775–47784. doi: 10.1074/jbc.M109244200. [DOI] [PubMed] [Google Scholar]
  16. Glick E., Leshkowitz D., Walker M. D. Transcription factor BETA2 acts cooperatively with E2A and PDX1 to activate the insulin gene promoter. J Biol Chem. 2000 Jan 21;275(3):2199–2204. doi: 10.1074/jbc.275.3.2199. [DOI] [PubMed] [Google Scholar]
  17. Gradwohl G., Dierich A., LeMeur M., Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1607–1611. doi: 10.1073/pnas.97.4.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
  19. Habener J. F., Stoffers D. A. A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc Assoc Am Physicians. 1998 Jan-Feb;110(1):12–21. [PubMed] [Google Scholar]
  20. Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jacoby D. B., Zilz N. D., Towle H. C. Sequences within the 5'-flanking region of the S14 gene confer responsiveness to glucose in primary hepatocytes. J Biol Chem. 1989 Oct 25;264(30):17623–17626. [PubMed] [Google Scholar]
  22. Karlsson O., Edlund T., Moss J. B., Rutter W. J., Walker M. D. A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8819–8823. doi: 10.1073/pnas.84.24.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karlsson O., Walker M. D., Rutter W. J., Edlund T. Individual protein-binding domains of the insulin gene enhancer positively activate beta-cell-specific transcription. Mol Cell Biol. 1989 Feb;9(2):823–827. doi: 10.1128/mcb.9.2.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaytor E. N., Shih H., Towle H. C. Carbohydrate regulation of hepatic gene expression. Evidence against a role for the upstream stimulatory factor. J Biol Chem. 1997 Mar 14;272(11):7525–7531. doi: 10.1074/jbc.272.11.7525. [DOI] [PubMed] [Google Scholar]
  25. Li N., Seetharam B. A 69-base pair fragment derived from human transcobalamin II promoter is sufficient for high bidirectional activity in the absence of a TATA box and an initiator element in transfected cells. Role of an E box in transcriptional activity. J Biol Chem. 1998 Oct 23;273(43):28170–28177. doi: 10.1074/jbc.273.43.28170. [DOI] [PubMed] [Google Scholar]
  26. Martin C. C., Bischof L. J., Bergman B., Hornbuckle L. A., Hilliker C., Frigeri C., Wahl D., Svitek C. A., Wong R., Goldman J. K. Cloning and characterization of the human and rat islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) genes. J Biol Chem. 2001 Apr 10;276(27):25197–25207. doi: 10.1074/jbc.M101549200. [DOI] [PubMed] [Google Scholar]
  27. Massari M. E., Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol. 2000 Jan;20(2):429–440. doi: 10.1128/mcb.20.2.429-440.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Naya F. J., Stellrecht C. M., Tsai M. J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 1995 Apr 15;9(8):1009–1019. doi: 10.1101/gad.9.8.1009. [DOI] [PubMed] [Google Scholar]
  29. O'Brien R. M., Noisin E. L., Suwanichkul A., Yamasaki T., Lucas P. C., Wang J. C., Powell D. R., Granner D. K. Hepatic nuclear factor 3- and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes. Mol Cell Biol. 1995 Mar;15(3):1747–1758. doi: 10.1128/mcb.15.3.1747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Offield M. F., Jetton T. L., Labosky P. A., Ray M., Stein R. W., Magnuson M. A., Hogan B. L., Wright C. V. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996 Mar;122(3):983–995. doi: 10.1242/dev.122.3.983. [DOI] [PubMed] [Google Scholar]
  31. Ohneda K., Ee H., German M. Regulation of insulin gene transcription. Semin Cell Dev Biol. 2000 Aug;11(4):227–233. doi: 10.1006/scdb.2000.0171. [DOI] [PubMed] [Google Scholar]
  32. Ohneda K., Mirmira R. G., Wang J., Johnson J. D., German M. S. The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol. 2000 Feb;20(3):900–911. doi: 10.1128/mcb.20.3.900-911.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Orlando V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci. 2000 Mar;25(3):99–104. doi: 10.1016/s0968-0004(99)01535-2. [DOI] [PubMed] [Google Scholar]
  34. Peers B., Leonard J., Sharma S., Teitelman G., Montminy M. R. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol Endocrinol. 1994 Dec;8(12):1798–1806. doi: 10.1210/mend.8.12.7708065. [DOI] [PubMed] [Google Scholar]
  35. Peyton M., Moss L. G., Tsai M. J. Two distinct class A helix-loop-helix transcription factors, E2A and BETA1, form separate DNA binding complexes on the insulin gene E box. J Biol Chem. 1994 Oct 14;269(41):25936–25941. [PubMed] [Google Scholar]
  36. Puri P. L., Sartorelli V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol. 2000 Nov;185(2):155–173. doi: 10.1002/1097-4652(200011)185:2<155::AID-JCP1>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  37. Qian J., Kaytor E. N., Towle H. C., Olson L. K. Upstream stimulatory factor regulates Pdx-1 gene expression in differentiated pancreatic beta-cells. Biochem J. 1999 Jul 15;341(Pt 2):315–322. [PMC free article] [PubMed] [Google Scholar]
  38. Qiu Yi, Guo Min, Huang Suming, Stein Roland. Insulin gene transcription is mediated by interactions between the p300 coactivator and PDX-1, BETA2, and E47. Mol Cell Biol. 2002 Jan;22(2):412–420. doi: 10.1128/MCB.22.2.412-420.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sharma A., Stein R. Glucose-induced transcription of the insulin gene is mediated by factors required for beta-cell-type-specific expression. Mol Cell Biol. 1994 Feb;14(2):871–879. doi: 10.1128/mcb.14.2.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sharma S., Leonard J., Lee S., Chapman H. D., Leiter E. H., Montminy M. R. Pancreatic islet expression of the homeobox factor STF-1 relies on an E-box motif that binds USF. J Biol Chem. 1996 Jan 26;271(4):2294–2299. doi: 10.1074/jbc.271.4.2294. [DOI] [PubMed] [Google Scholar]
  41. St-Onge L., Sosa-Pineda B., Chowdhury K., Mansouri A., Gruss P. Pax6 is required for differentiation of glucagon-producing alpha-cells in mouse pancreas. Nature. 1997 May 22;387(6631):406–409. doi: 10.1038/387406a0. [DOI] [PubMed] [Google Scholar]
  42. Stafford J. M., Wilkinson J. C., Beechem J. M., Granner D. K. Accessory factors facilitate the binding of glucocorticoid receptor to the phosphoenolpyruvate carboxykinase gene promoter. J Biol Chem. 2001 Aug 22;276(43):39885–39891. doi: 10.1074/jbc.M105370200. [DOI] [PubMed] [Google Scholar]
  43. Sussel L., Kalamaras J., Hartigan-O'Connor D. J., Meneses J. J., Pedersen R. A., Rubenstein J. L., German M. S. Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development. 1998 Jun;125(12):2213–2221. doi: 10.1242/dev.125.12.2213. [DOI] [PubMed] [Google Scholar]
  44. Viollet B., Lefrançois-Martinez A. M., Henrion A., Kahn A., Raymondjean M., Martinez A. Immunochemical characterization and transacting properties of upstream stimulatory factor isoforms. J Biol Chem. 1996 Jan 19;271(3):1405–1415. doi: 10.1074/jbc.271.3.1405. [DOI] [PubMed] [Google Scholar]
  45. Whelan J., Cordle S. R., Henderson E., Weil P. A., Stein R. Identification of a pancreatic beta-cell insulin gene transcription factor that binds to and appears to activate cell-type-specific expression: its possible relationship to other cellular factors that bind to a common insulin gene sequence. Mol Cell Biol. 1990 Apr;10(4):1564–1572. doi: 10.1128/mcb.10.4.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Winter W. E. Molecular and biochemical analysis of the MODY syndromes. Pediatr Diabetes. 2000 Jun;1(2):88–117. doi: 10.1034/j.1399-5448.2000.010206.x. [DOI] [PubMed] [Google Scholar]
  47. van Schaftingen Emile, Gerin Isabelle. The glucose-6-phosphatase system. Biochem J. 2002 Mar 15;362(Pt 3):513–532. doi: 10.1042/0264-6021:3620513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. van de Werve G., Lange A., Newgard C., Méchin M. C., Li Y., Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. Eur J Biochem. 2000 Mar;267(6):1533–1549. doi: 10.1046/j.1432-1327.2000.01160.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES