Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):823–830. doi: 10.1042/BJ20021946

Iron-sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana.

Sébastien Léon 1, Brigitte Touraine 1, Cécile Ribot 1, Jean-François Briat 1, Stéphane Lobréaux 1
PMCID: PMC1223333  PMID: 12553879

Abstract

Recent results are in favour of a role for NFU-like proteins in Fe-S cluster biogenesis. These polypeptides share a conserved CXXC motif in their NFU domain. In the present study, we have characterized Arabidopsis thaliana NFU1-5 genes. AtNFU proteins are separated into two classes. NFU4 and NFU5 are part of the mitochondrial type, presenting a structural organization similar to Saccharomyces cerevisiae Nfu1p. These proteins complement a Delta isu1 Delta nfu1 yeast mutant and NFU4 mitochondrial localization was confirmed by green fluorescent protein fusion analysis. AtNFU1-3 represent a new class of NFU proteins, unique to plants. These polypeptides are made of two NFU domains, the second having lost its CXXC motif. AtNFU1-3 proteins are more related to Synechocystis PCC6803 NFU-like proteins and are localized to plastids when fused with the green fluorescent protein. NFU2 and/or NFU3 were detected in leaf chloroplasts by immunoblotting. NFU1 and NFU2 are functional NFU capable of restoring the growth of a Delta isu1 Delta nfu1 yeast mutant, when addressed to yeast mitochondria. Furthermore, NFU2 recombinant protein is capable of binding a labile 2Fe-2S cluster in vitro. These results demonstrate the presence of distinct NFU proteins in Arabidopsis mitochondria and plastids. Such results suggest the existence of two different Fe-S assembly machineries in plant cells.

Full Text

The Full Text of this article is available as a PDF (261.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agar J. N., Krebs C., Frazzon J., Huynh B. H., Dean D. R., Johnson M. K. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry. 2000 Jul 11;39(27):7856–7862. doi: 10.1021/bi000931n. [DOI] [PubMed] [Google Scholar]
  2. Agar J. N., Yuvaniyama P., Jack R. F., Cash V. L., Smith A. D., Dean D. R., Johnson M. K. Modular organization and identification of a mononuclear iron-binding site within the NifU protein. J Biol Inorg Chem. 2000 Apr;5(2):167–177. doi: 10.1007/s007750050361. [DOI] [PubMed] [Google Scholar]
  3. Brunelli J. P., Pall M. L. A series of yeast/Escherichia coli lambda expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast. 1993 Dec;9(12):1309–1318. doi: 10.1002/yea.320091204. [DOI] [PubMed] [Google Scholar]
  4. Claros M. G., Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996 Nov 1;241(3):779–786. doi: 10.1111/j.1432-1033.1996.00779.x. [DOI] [PubMed] [Google Scholar]
  5. Emanuelsson O., Nielsen H., von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999 May;8(5):978–984. doi: 10.1110/ps.8.5.978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frazzon J., Fick J. R., Dean D. R. Biosynthesis of iron-sulphur clusters is a complex and highly conserved process. Biochem Soc Trans. 2002 Aug;30(4):680–685. doi: 10.1042/bst0300680. [DOI] [PubMed] [Google Scholar]
  7. Fu W., Jack R. F., Morgan T. V., Dean D. R., Johnson M. K. nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry. 1994 Nov 15;33(45):13455–13463. doi: 10.1021/bi00249a034. [DOI] [PubMed] [Google Scholar]
  8. Garland S. A., Hoff K., Vickery L. E., Culotta V. C. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J Mol Biol. 1999 Dec 10;294(4):897–907. doi: 10.1006/jmbi.1999.3294. [DOI] [PubMed] [Google Scholar]
  9. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995 Apr 15;11(4):355–360. doi: 10.1002/yea.320110408. [DOI] [PubMed] [Google Scholar]
  10. Kispal G., Csere P., Prohl C., Lill R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 1999 Jul 15;18(14):3981–3989. doi: 10.1093/emboj/18.14.3981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krebs C., Agar J. N., Smith A. D., Frazzon J., Dean D. R., Huynh B. H., Johnson M. K. IscA, an alternate scaffold for Fe-S cluster biosynthesis. Biochemistry. 2001 Nov 20;40(46):14069–14080. doi: 10.1021/bi015656z. [DOI] [PubMed] [Google Scholar]
  12. Kunst L. Preparation of physiologically active chloroplasts from Arabidopsis. Methods Mol Biol. 1998;82:43–48. doi: 10.1385/0-89603-391-0:43. [DOI] [PubMed] [Google Scholar]
  13. Kushnir S., Babiychuk E., Storozhenko S., Davey M. W., Papenbrock J., De Rycke R., Engler G., Stephan U. W., Lange H., Kispal G. A mutation of the mitochondrial ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell. 2001 Jan;13(1):89–100. doi: 10.1105/tpc.13.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lobreaux S., Massenet O., Briat J. F. Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol. 1992 Jul;19(4):563–575. doi: 10.1007/BF00026783. [DOI] [PubMed] [Google Scholar]
  15. Léon Sébastien, Touraine Brigitte, Briat Jean-François, Lobréaux Stéphane. The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J. 2002 Sep 1;366(Pt 2):557–564. doi: 10.1042/BJ20020322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macasev D., Newbigin E., Whelan J., Lithgow T. How do plant mitochondria avoid importing chloroplast proteins? Components of the import apparatus Tom20 and Tom22 from Arabidopsis differ from their fungal counterparts. Plant Physiol. 2000 Jul;123(3):811–816. doi: 10.1104/pp.123.3.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin W., Stoebe B., Goremykin V., Hapsmann S., Hasegawa M., Kowallik K. V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature. 1998 May 14;393(6681):162–165. doi: 10.1038/30234. [DOI] [PubMed] [Google Scholar]
  18. Mühlenhoff U., Lill R. Biogenesis of iron-sulfur proteins in eukaryotes: a novel task of mitochondria that is inherited from bacteria. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):370–382. doi: 10.1016/s0005-2728(00)00174-2. [DOI] [PubMed] [Google Scholar]
  19. Mühlenhoff Ulrich, Richhardt Nadine, Gerber Jana, Lill Roland. Characterization of iron-sulfur protein assembly in isolated mitochondria. A requirement for ATP, NADH, and reduced iron. J Biol Chem. 2002 Jun 13;277(33):29810–29816. doi: 10.1074/jbc.M204675200. [DOI] [PubMed] [Google Scholar]
  20. Nishio K., Nakai M. Transfer of iron-sulfur cluster from NifU to apoferredoxin. J Biol Chem. 2000 Jul 28;275(30):22615–22618. doi: 10.1074/jbc.C000279200. [DOI] [PubMed] [Google Scholar]
  21. Rolland N., Janosi L., Block M. A., Shuda M., Teyssier E., Miège C., Chéniclet C., Carde J. P., Kaji A., Joyard J. Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in escherichia coli carrying temperature-sensitive ribosome recycling factor. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5464–5469. doi: 10.1073/pnas.96.10.5464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schilke B., Voisine C., Beinert H., Craig E. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10206–10211. doi: 10.1073/pnas.96.18.10206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smith R. F., Smith T. F. Pattern-induced multi-sequence alignment (PIMA) algorithm employing secondary structure-dependent gap penalties for use in comparative protein modelling. Protein Eng. 1992 Jan;5(1):35–41. doi: 10.1093/protein/5.1.35. [DOI] [PubMed] [Google Scholar]
  25. Spielewoy N., Schulz H., Grienenberger J. M., Thony-Meyer L., Bonnard G. CCME, a nuclear-encoded heme-binding protein involved in cytochrome c maturation in plant mitochondria. J Biol Chem. 2000 Nov 7;276(8):5491–5497. doi: 10.1074/jbc.M008853200. [DOI] [PubMed] [Google Scholar]
  26. Tachezy J., Sánchez L. B., Müller M. Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol. 2001 Oct;18(10):1919–1928. doi: 10.1093/oxfordjournals.molbev.a003732. [DOI] [PubMed] [Google Scholar]
  27. Takahashi Y., Mitsui A., Hase T., Matsubara H. Formation of the iron-sulfur cluster of ferredoxin in isolated chloroplasts. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2434–2437. doi: 10.1073/pnas.83.8.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker M. E., Valentin E., Reid G. A. Transport of the yeast ATP synthase beta-subunit into mitochondria. Effects of amino acid substitutions on targeting. Biochem J. 1990 Feb 15;266(1):227–234. doi: 10.1042/bj2660227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yuvaniyama P., Agar J. N., Cash V. L., Johnson M. K., Dean D. R. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):599–604. doi: 10.1073/pnas.97.2.599. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES