Abstract
We previously reported that endothelial-derived lipase (EDL) efficiently hydrolyses high-density-lipoprotein-derived phosphatidycholine (HDL-PC). In the present study, we assessed the ability of EDL to supply HepG2 cells with non-esterified fatty acids (NEFA) liberated from HDL-phospholipids. For this purpose, HepG2 cells infected with adenovirus encoding human EDL (EDL-Ad), or with control beta-galactosidase-expressing adenovirus (LacZ-Ad), were incubated with (14)C-HDL-PC. The analysis of the cellular lipids by TLC revealed that EDL overexpression led to an increase in the amount of cellular (14)C-lipids, whereby the label was mainly incorporated into phospholipids and triacylglycerols (TAG). Cells expressing mutant enzymically inactive EDL (MUT-EDL-Ad) contained similar amounts of (14)C-TAG but higher amounts of (14)C-phosphatidylcholine (PC) compared with LacZ-Ad-infected cells. The co-expression of CD36 augmented the EDL-mediated accumulation of (14)C-lipids in HEK-293 cells. The quadrupole MS analysis of the cellular lipids revealed an increased content of PC and TAG in EDL-expressing HepG2 cells compared with MUT-EDL-Ad-expressing and control cells. However, the MUT-EDL-Ad-expressing cells contained more PC than control cells. Additionally, EDL overexpression led to a 2-fold decrease in the amount of fatty acid synthase mRNA and, in turn, a slightly, but significantly, decreased rate of fatty acid (FA) synthesis in HepG2 cells. In the present study, we show for the first time that EDL efficiently supplies HepG2 cells with NEFA derived from HDL-PL, thus affecting cellular lipid composition and FA synthesis.
Full Text
The Full Text of this article is available as a PDF (187.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acton S. L., Scherer P. E., Lodish H. F., Krieger M. Expression cloning of SR-BI, a CD36-related class B scavenger receptor. J Biol Chem. 1994 Aug 19;269(33):21003–21009. [PubMed] [Google Scholar]
- Acton S., Rigotti A., Landschulz K. T., Xu S., Hobbs H. H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science. 1996 Jan 26;271(5248):518–520. doi: 10.1126/science.271.5248.518. [DOI] [PubMed] [Google Scholar]
- Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8342–8346. doi: 10.1073/pnas.88.19.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brand K., Dugi K. A., Brunzell J. D., Nevin D. N., Santamarina-Fojo S. A novel A-->G mutation in intron I of the hepatic lipase gene leads to alternative splicing resulting in enzyme deficiency. J Lipid Res. 1996 Jun;37(6):1213–1223. [PubMed] [Google Scholar]
- Brown M. S., Ye J., Rawson R. B., Goldstein J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell. 2000 Feb 18;100(4):391–398. doi: 10.1016/s0092-8674(00)80675-3. [DOI] [PubMed] [Google Scholar]
- Calvo D., Gómez-Coronado D., Suárez Y., Lasunción M. A., Vega M. A. Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. J Lipid Res. 1998 Apr;39(4):777–788. [PubMed] [Google Scholar]
- Coleman T., Seip R. L., Gimble J. M., Lee D., Maeda N., Semenkovich C. F. COOH-terminal disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity. J Biol Chem. 1995 May 26;270(21):12518–12525. doi: 10.1074/jbc.270.21.12518. [DOI] [PubMed] [Google Scholar]
- Dugi K. A., Amar M. J., Haudenschild C. C., Shamburek R. D., Bensadoun A., Hoyt R. F., Jr, Fruchart-Najib J., Madj Z., Brewer H. B., Jr, Santamarina-Fojo S. In vivo evidence for both lipolytic and nonlipolytic function of hepatic lipase in the metabolism of HDL. Arterioscler Thromb Vasc Biol. 2000 Mar;20(3):793–800. doi: 10.1161/01.atv.20.3.793. [DOI] [PubMed] [Google Scholar]
- Febbraio M., Hajjar D. P., Silverstein R. L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001 Sep;108(6):785–791. doi: 10.1172/JCI14006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons G. F., Khurana R., Odwell A., Seelaender M. C. Lipid balance in HepG2 cells: active synthesis and impaired mobilization. J Lipid Res. 1994 Oct;35(10):1801–1808. [PubMed] [Google Scholar]
- Goldberg I. J. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996 Apr;37(4):693–707. [PubMed] [Google Scholar]
- Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
- Hannah V. C., Ou J., Luong A., Goldstein J. L., Brown M. S. Unsaturated fatty acids down-regulate srebp isoforms 1a and 1c by two mechanisms in HEK-293 cells. J Biol Chem. 2000 Nov 20;276(6):4365–4372. doi: 10.1074/jbc.M007273200. [DOI] [PubMed] [Google Scholar]
- Hegele R. A., Little J. A., Vezina C., Maguire G. F., Tu L., Wolever T. S., Jenkins D. J., Connelly P. W. Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler Thromb. 1993 May;13(5):720–728. doi: 10.1161/01.atv.13.5.720. [DOI] [PubMed] [Google Scholar]
- Hirata K., Dichek H. L., Cioffi J. A., Choi S. Y., Leeper N. J., Quintana L., Kronmal G. S., Cooper A. D., Quertermous T. Cloning of a unique lipase from endothelial cells extends the lipase gene family. J Biol Chem. 1999 May 14;274(20):14170–14175. doi: 10.1074/jbc.274.20.14170. [DOI] [PubMed] [Google Scholar]
- Homanics G. E., de Silva H. V., Osada J., Zhang S. H., Wong H., Borensztajn J., Maeda N. Mild dyslipidemia in mice following targeted inactivation of the hepatic lipase gene. J Biol Chem. 1995 Feb 17;270(7):2974–2980. doi: 10.1074/jbc.270.7.2974. [DOI] [PubMed] [Google Scholar]
- Iverius P. H., Brunzell J. D. Human adipose tissue lipoprotein lipase: changes with feeding and relation to postheparin plasma enzyme. Am J Physiol. 1985 Jul;249(1 Pt 1):E107–E114. doi: 10.1152/ajpendo.1985.249.1.E107. [DOI] [PubMed] [Google Scholar]
- Jaye M., Lynch K. J., Krawiec J., Marchadier D., Maugeais C., Doan K., South V., Amin D., Perrone M., Rader D. J. A novel endothelial-derived lipase that modulates HDL metabolism. Nat Genet. 1999 Apr;21(4):424–428. doi: 10.1038/7766. [DOI] [PubMed] [Google Scholar]
- Ji Z. S., Dichek H. L., Miranda R. D., Mahley R. W. Heparan sulfate proteoglycans participate in hepatic lipaseand apolipoprotein E-mediated binding and uptake of plasma lipoproteins, including high density lipoproteins. J Biol Chem. 1997 Dec 12;272(50):31285–31292. doi: 10.1074/jbc.272.50.31285. [DOI] [PubMed] [Google Scholar]
- Jump D. B., Clarke S. D. Regulation of gene expression by dietary fat. Annu Rev Nutr. 1999;19:63–90. doi: 10.1146/annurev.nutr.19.1.63. [DOI] [PubMed] [Google Scholar]
- Jump Donald B. Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr Opin Lipidol. 2002 Apr;13(2):155–164. doi: 10.1097/00041433-200204000-00007. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lutz E. P., Merkel M., Kako Y., Melford K., Radner H., Breslow J. L., Bensadoun A., Goldberg I. J. Heparin-binding defective lipoprotein lipase is unstable and causes abnormalities in lipid delivery to tissues. J Clin Invest. 2001 May;107(9):1183–1192. doi: 10.1172/JCI11774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCoy Mary G., Sun Gwo-Shing, Marchadier Dawn, Maugeais Cyrille, Glick Jane M., Rader Daniel J. Characterization of the lipolytic activity of endothelial lipase. J Lipid Res. 2002 Jun;43(6):921–929. [PubMed] [Google Scholar]
- Merkel M., Kako Y., Radner H., Cho I. S., Ramasamy R., Brunzell J. D., Goldberg I. J., Breslow J. L. Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13841–13846. doi: 10.1073/pnas.95.23.13841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon Yang Soo, Latasa Maria-Jesus, Griffin Michael J., Sul Hei Sook. Suppression of fatty acid synthase promoter by polyunsaturated fatty acids. J Lipid Res. 2002 May;43(5):691–698. [PubMed] [Google Scholar]
- Rojas C., Olivecrona T., Bengtsson-Olivecrona G. Comparison of the action of lipoprotein lipase on triacylglycerols and phospholipids when presented in mixed liposomes or in emulsion droplets. Eur J Biochem. 1991 Apr 23;197(2):315–321. doi: 10.1111/j.1432-1033.1991.tb15913.x. [DOI] [PubMed] [Google Scholar]
- Santamarina-Fojo S., Haudenschild C., Amar M. The role of hepatic lipase in lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol. 1998 Jun;9(3):211–219. doi: 10.1097/00041433-199806000-00005. [DOI] [PubMed] [Google Scholar]
- Santamarina-Fojo S., Haudenschild C. Role of hepatic and lipoprotein lipase in lipoprotein metabolism and atherosclerosis: studies in transgenic and knockout animal models and somatic gene transfer. Int J Tissue React. 2000;22(2-3):39–47. [PubMed] [Google Scholar]
- Sattler W., Leis H. J., Kostner G. M., Malle E. Quantification of 7-dehydrocholesterol in plasma and amniotic fluid by liquid chromatography/particle beam-mass spectrometry as a biochemical diagnostic marker for the Smith-Lemli-Opitz syndrome. Rapid Commun Mass Spectrom. 1995;9(13):1288–1292. doi: 10.1002/rcm.1290091313. [DOI] [PubMed] [Google Scholar]
- Schumaker V. N., Puppione D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 1986;128:155–170. doi: 10.1016/0076-6879(86)28066-0. [DOI] [PubMed] [Google Scholar]
- Seo T., Oelkers P. M., Giattina M. R., Worgall T. S., Sturley S. L., Deckelbaum R. J. Differential modulation of ACAT1 and ACAT2 transcription and activity by long chain free fatty acids in cultured cells. Biochemistry. 2001 Apr 17;40(15):4756–4762. doi: 10.1021/bi0022947. [DOI] [PubMed] [Google Scholar]
- Strauss Juliane G., Zimmermann Robert, Hrzenjak Andelko, Zhou Yonggang, Kratky Dagmar, Levak-Frank Sanja, Kostner Gert M., Zechner Rudolf, Frank Sasa. Endothelial cell-derived lipase mediates uptake and binding of high-density lipoprotein (HDL) particles and the selective uptake of HDL-associated cholesterol esters independent of its enzymic activity. Biochem J. 2002 Nov 15;368(Pt 1):69–79. doi: 10.1042/BJ20020306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thuren T. Hepatic lipase and HDL metabolism. Curr Opin Lipidol. 2000 Jun;11(3):277–283. doi: 10.1097/00041433-200006000-00008. [DOI] [PubMed] [Google Scholar]
- Urban S., Zieseniss S., Werder M., Hauser H., Budzinski R., Engelmann B. Scavenger receptor BI transfers major lipoprotein-associated phospholipids into the cells. J Biol Chem. 2000 Oct 27;275(43):33409–33415. doi: 10.1074/jbc.M004031200. [DOI] [PubMed] [Google Scholar]
- Waite M., Sisson P. Studies on the substrate specificity of the phospholipase A1 of the plasma membrane of rat liver. J Biol Chem. 1974 Oct 25;249(20):6401–6405. [PubMed] [Google Scholar]
- Weinstock P. H., Bisgaier C. L., Aalto-Setälä K., Radner H., Ramakrishnan R., Levak-Frank S., Essenburg A. D., Zechner R., Breslow J. L. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J Clin Invest. 1995 Dec;96(6):2555–2568. doi: 10.1172/JCI118319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu J., Teran-Garcia M., Park J. H., Nakamura M. T., Clarke S. D. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. J Biol Chem. 2000 Dec 21;276(13):9800–9807. doi: 10.1074/jbc.M008973200. [DOI] [PubMed] [Google Scholar]
- Yahagi N., Shimano H., Hasty A. H., Amemiya-Kudo M., Okazaki H., Tamura Y., Iizuka Y., Shionoiri F., Ohashi K., Osuga J. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. J Biol Chem. 1999 Dec 10;274(50):35840–35844. doi: 10.1074/jbc.274.50.35840. [DOI] [PubMed] [Google Scholar]
- Yoshikawa Tomohiro, Shimano Hitoshi, Yahagi Naoya, Ide Tomohiro, Amemiya-Kudo Michiyo, Matsuzaka Takashi, Nakakuki Masanori, Tomita Sachiko, Okazaki Hiroaki, Tamura Yoshiaki. Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements. J Biol Chem. 2001 Nov 2;277(3):1705–1711. doi: 10.1074/jbc.M105711200. [DOI] [PubMed] [Google Scholar]
- Zechner R. The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism. Curr Opin Lipidol. 1997 Apr;8(2):77–88. doi: 10.1097/00041433-199704000-00005. [DOI] [PubMed] [Google Scholar]