Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):1005–1011. doi: 10.1042/BJ20021374

The internal alternative NADH dehydrogenase of Neurospora crassa mitochondria.

Margarida Duarte 1, Markus Peters 1, Ulrich Schulte 1, Arnaldo Videira 1
PMCID: PMC1223338  PMID: 12556227

Abstract

An open reading frame homologous with genes of non-proton-pumping NADH dehydrogenases was identified in the genome of Neurospora crassa. The 57 kDa NADH:ubiquinone oxidoreductase acts as internal (alternative) respiratory NADH dehydrogenase (NDI1) in the fungal mitochondria. The precursor polypeptide includes a pre-sequence of 31 amino acids, and the mature enzyme comprises one FAD molecule as a prosthetic group. It catalyses specifically the oxidation of NADH. Western blot analysis of fungal mitochondria fractionated with digitonin indicated that the protein is located at the inner face of the inner membrane of the organelle (internal enzyme). The corresponding gene was inactivated by the generation of repeat-induced point mutations. The respiratory activity of mitochondria from the resulting null-mutant ndi1 is almost fully inhibited by rotenone, an inhibitor of the proton-pumping complex I, when matrix-generated NADH is used as substrate. Although no effects of the NDI1 defect on vegetative growth and sexual differentiation were observed, the germination of both sexual and asexual ndi1 mutant spores is significantly delayed. Crosses between the ndi1 mutant strain and complex I-deficient mutants yielded no viable double mutants. Our data indicate: (i) that NDI1 represents the sole internal alternative NADH dehydrogenase of Neurospora mitochondria; (ii) that NDI1 and complex I are functionally complementary to each other; and (iii) that NDI1 is specially needed during spore germination.

Full Text

The Full Text of this article is available as a PDF (265.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida T., Duarte M., Melo A. M., Videira A. The 24-kDa iron-sulphur subunit of complex I is required for enzyme activity. Eur J Biochem. 1999 Oct 1;265(1):86–93. doi: 10.1046/j.1432-1327.1999.00668.x. [DOI] [PubMed] [Google Scholar]
  2. Alves P. C., Videira A. Disruption of the gene coding for the 21.3-kDa subunit of the peripheral arm of complex I from Neurospora crassa. J Biol Chem. 1994 Mar 11;269(10):7777–7784. [PubMed] [Google Scholar]
  3. Bakker B. M., Overkamp K. M., van Maris AJ, Kötter P., Luttik M. A., van Dijken JP, Pronk J. T. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001 Jan;25(1):15–37. doi: 10.1111/j.1574-6976.2001.tb00570.x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Davis Rowland H., Perkins David D. Timeline: Neurospora: a model of model microbes. Nat Rev Genet. 2002 May;3(5):397–403. doi: 10.1038/nrg797. [DOI] [PubMed] [Google Scholar]
  6. Duarte M., Mota N., Pinto L., Videira A. Inactivation of the gene coding for the 30.4-kDa subunit of respiratory chain NADH dehydrogenase: is the enzyme essential for Neurospora? Mol Gen Genet. 1998 Feb;257(3):368–375. doi: 10.1007/s004380050659. [DOI] [PubMed] [Google Scholar]
  7. Duarte M., Videira A. Respiratory chain complex I is essential for sexual development in neurospora and binding of iron sulfur clusters are required for enzyme assembly. Genetics. 2000 Oct;156(2):607–615. doi: 10.1093/genetics/156.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fang Jing, Beattie Diana S. Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. Biochemistry. 2002 Mar 5;41(9):3065–3072. doi: 10.1021/bi015989w. [DOI] [PubMed] [Google Scholar]
  9. Fecke W., Sled V. D., Ohnishi T., Weiss H. Disruption of the gene encoding the NADH-binding subunit of NADH: ubiquinone oxidoreductase in Neurospora crassa. Formation of a partially assembled enzyme without FMN and the iron-sulphur cluster N-3. Eur J Biochem. 1994 Mar 1;220(2):551–558. doi: 10.1111/j.1432-1033.1994.tb18655.x. [DOI] [PubMed] [Google Scholar]
  10. Ferreirinha F., Duarte M., Melo A. M., Videira A. Effects of disrupting the 21 kDa subunit of complex I from Neurospora crassa. Biochem J. 1999 Sep 15;342(Pt 3):551–554. [PMC free article] [PubMed] [Google Scholar]
  11. Finel M. Genetic inactivation of the H(+)-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans is facilitated by insertion of the ndh gene from Escherichia coli. FEBS Lett. 1996 Sep 9;393(1):81–85. doi: 10.1016/0014-5793(96)00831-9. [DOI] [PubMed] [Google Scholar]
  12. Friedrich T., Weiss H. Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol. 1997 Aug 21;187(4):529–540. doi: 10.1006/jtbi.1996.0387. [DOI] [PubMed] [Google Scholar]
  13. Fölsch H., Guiard B., Neupert W., Stuart R. A. Internal targeting signal of the BCS1 protein: a novel mechanism of import into mitochondria. EMBO J. 1996 Feb 1;15(3):479–487. [PMC free article] [PubMed] [Google Scholar]
  14. Hawlitschek G., Schneider H., Schmidt B., Tropschug M., Hartl F. U., Neupert W. Mitochondrial protein import: identification of processing peptidase and of PEP, a processing enhancing protein. Cell. 1988 Jun 3;53(5):795–806. doi: 10.1016/0092-8674(88)90096-7. [DOI] [PubMed] [Google Scholar]
  15. Howitt C. A., Udall P. K., Vermaas W. F. Type 2 NADH dehydrogenases in the cyanobacterium Synechocystis sp. strain PCC 6803 are involved in regulation rather than respiration. J Bacteriol. 1999 Jul;181(13):3994–4003. doi: 10.1128/jb.181.13.3994-4003.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kerscher S. J. Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Biochim Biophys Acta. 2000 Aug 15;1459(2-3):274–283. doi: 10.1016/s0005-2728(00)00162-6. [DOI] [PubMed] [Google Scholar]
  17. Kerscher S. J., Eschemann A., Okun P. M., Brandt U. External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica. J Cell Sci. 2001 Nov;114(Pt 21):3915–3921. doi: 10.1242/jcs.114.21.3915. [DOI] [PubMed] [Google Scholar]
  18. Kerscher S. J., Okun J. G., Brandt U. A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci. 1999 Jul;112(Pt 14):2347–2354. doi: 10.1242/jcs.112.14.2347. [DOI] [PubMed] [Google Scholar]
  19. Lill R., Stuart R. A., Drygas M. E., Nargang F. E., Neupert W. Import of cytochrome c heme lyase into mitochondria: a novel pathway into the intermembrane space. EMBO J. 1992 Feb;11(2):449–456. doi: 10.1002/j.1460-2075.1992.tb05074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  21. Melo A. M., Duarte M., Møller I. M., Prokisch H., Dolan P. L., Pinto L., Nelson M. A., Videira A. The external calcium-dependent NADPH dehydrogenase from Neurospora crassa mitochondria. J Biol Chem. 2000 Nov 9;276(6):3947–3951. doi: 10.1074/jbc.M008199200. [DOI] [PubMed] [Google Scholar]
  22. Melo A. M., Duarte M., Videira A. Primary structure and characterisation of a 64 kDa NADH dehydrogenase from the inner membrane of Neurospora crassa mitochondria. Biochim Biophys Acta. 1999 Aug 4;1412(3):282–287. doi: 10.1016/s0005-2728(99)00072-9. [DOI] [PubMed] [Google Scholar]
  23. Moller Ian M. PLANT MITOCHONDRIA AND OXIDATIVE STRESS: Electron Transport, NADPH Turnover, and Metabolism of Reactive Oxygen Species. Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52(NaN):561–591. doi: 10.1146/annurev.arplant.52.1.561. [DOI] [PubMed] [Google Scholar]
  24. Overkamp Karin M., Bakker Barbara M., Kötter Peter, Luttik Marijke A. H., Van Dijken Johannes P., Pronk Jack T. Metabolic engineering of glycerol production in Saccharomyces cerevisiae. Appl Environ Microbiol. 2002 Jun;68(6):2814–2821. doi: 10.1128/AEM.68.6.2814-2821.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Påhlman Inga-Lill, Larsson Christer, Averét Nicole, Bunoust Odile, Boubekeur Samira, Gustafsson Lena, Rigoulet Michel. Kinetic regulation of the mitochondrial glycerol-3-phosphate dehydrogenase by the external NADH dehydrogenase in Saccharomyces cerevisiae. J Biol Chem. 2002 May 24;277(31):27991–27995. doi: 10.1074/jbc.M204079200. [DOI] [PubMed] [Google Scholar]
  26. Ragone G., Caizzi R., Moschetti R., Barsanti P., De Pinto V., Caggese C. The Drosophila melanogaster gene for the NADH:ubiquinone oxidoreductase acyl carrier protein: developmental expression analysis and evidence for alternatively spliced forms. Mol Gen Genet. 1999 Jun;261(4-5):690–697. doi: 10.1007/s004380050012. [DOI] [PubMed] [Google Scholar]
  27. Schmit J. C., Brody S. Biochemical genetics of Neurospora crassa conidial germination. Bacteriol Rev. 1976 Mar;40(1):1–41. doi: 10.1128/br.40.1.1-41.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schulte U., Haupt V., Abelmann A., Fecke W., Brors B., Rasmussen T., Friedrich T., Weiss H. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex. J Mol Biol. 1999 Sep 24;292(3):569–580. doi: 10.1006/jmbi.1999.3096. [DOI] [PubMed] [Google Scholar]
  29. Schwitzguébel J. P., Palmer J. M. Properties of mitochondria as a function of the growth stages of Neurospora crassa. J Bacteriol. 1982 Feb;149(2):612–619. doi: 10.1128/jb.149.2.612-619.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Selker E. U., Garrett P. W. DNA sequence duplications trigger gene inactivation in Neurospora crassa. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6870–6874. doi: 10.1073/pnas.85.18.6870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smeitink J., Sengers R., Trijbels F., van den Heuvel L. Human NADH:ubiquinone oxidoreductase. J Bioenerg Biomembr. 2001 Jun;33(3):259–266. doi: 10.1023/a:1010743321800. [DOI] [PubMed] [Google Scholar]
  32. Svensson A. S., Rasmusson A. G. Light-dependent gene expression for proteins in the respiratory chain of potato leaves. Plant J. 2001 Oct;28(1):73–82. doi: 10.1046/j.1365-313x.2001.01128.x. [DOI] [PubMed] [Google Scholar]
  33. Svensson A. Staffan, Johansson Fredrik I., Møller Ian M., Rasmusson Allan G. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Lett. 2002 Apr 24;517(1-3):79–82. doi: 10.1016/s0014-5793(02)02581-4. [DOI] [PubMed] [Google Scholar]
  34. Tsang W. Y., Sayles L. C., Grad L. I., Pilgrim D. B., Lemire B. D. Mitochondrial respiratory chain deficiency in Caenorhabditis elegans results in developmental arrest and increased life span. J Biol Chem. 2001 Jun 15;276(34):32240–32246. doi: 10.1074/jbc.M103999200. [DOI] [PubMed] [Google Scholar]
  35. Videir A., Duarte M. On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria. J Bioenerg Biomembr. 2001 Jun;33(3):197–203. doi: 10.1023/a:1010778802236. [DOI] [PubMed] [Google Scholar]
  36. Videira A., Azevedo J. E., Werner S., Cabral P. The 12.3 kDa subunit of complex I (respiratory-chain NADH dehydrogenase) from Neurospora crassa: cDNA cloning and chromosomal mapping of the gene. Biochem J. 1993 May 1;291(Pt 3):729–732. doi: 10.1042/bj2910729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Videira A. Complex I from the fungus Neurospora crassa. Biochim Biophys Acta. 1998 May 6;1364(2):89–100. doi: 10.1016/s0005-2728(98)00020-6. [DOI] [PubMed] [Google Scholar]
  38. Videira A., Tropschug M., Werner S. Primary structure and expression of a nuclear-coded subunit of complex I homologous to proteins specified by the chloroplast genome. Biochem Biophys Res Commun. 1990 Sep 28;171(3):1168–1174. doi: 10.1016/0006-291x(90)90807-y. [DOI] [PubMed] [Google Scholar]
  39. Videira A., Tropschüg M., Wachter E., Schneider H., Werner S. Molecular cloning of subunits of complex I from Neurospora crassa. Primary structure and in vitro expression of a 22-kDa polypeptide. J Biol Chem. 1990 Aug 5;265(22):13060–13065. [PubMed] [Google Scholar]
  40. Videira A., Werner S. Assembly kinetics and identification of precursor proteins of complex I from Neurospora crassa. Eur J Biochem. 1989 May 1;181(2):493–502. doi: 10.1111/j.1432-1033.1989.tb14751.x. [DOI] [PubMed] [Google Scholar]
  41. Videira Arnaldo, Duarte Margarida. From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta. 2002 Sep 10;1555(1-3):187–191. doi: 10.1016/s0005-2728(02)00276-1. [DOI] [PubMed] [Google Scholar]
  42. Walker J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992 Aug;25(3):253–324. doi: 10.1017/s003358350000425x. [DOI] [PubMed] [Google Scholar]
  43. Weiss H., Friedrich T., Hofhaus G., Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem. 1991 May 8;197(3):563–576. doi: 10.1111/j.1432-1033.1991.tb15945.x. [DOI] [PubMed] [Google Scholar]
  44. Weiss H., von Jagow G., Klingenberg M., Bücher T. Characterization of Neurospora crassa mitochondria prepared with a grind-mill. Eur J Biochem. 1970 May 1;14(1):75–82. doi: 10.1111/j.1432-1033.1970.tb00263.x. [DOI] [PubMed] [Google Scholar]
  45. Yagi T., Seo B. B., Di Bernardo S., Nakamaru-Ogiso E., Kao M. C., Matsuno-Yagi A. NADH dehydrogenases: from basic science to biomedicine. J Bioenerg Biomembr. 2001 Jun;33(3):233–242. doi: 10.1023/a:1010787004053. [DOI] [PubMed] [Google Scholar]
  46. Yagi T. The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim Biophys Acta. 1993 Feb 8;1141(1):1–17. doi: 10.1016/0005-2728(93)90182-f. [DOI] [PubMed] [Google Scholar]
  47. Zauner R., Christner J., Jung G., Borchart U., Machleidt W., Videira A., Werner S. Identification of the polypeptide encoded by the URF-1 gene of Neurospora crassa mtDNA. Eur J Biochem. 1985 Aug 1;150(3):447–454. doi: 10.1111/j.1432-1033.1985.tb09042.x. [DOI] [PubMed] [Google Scholar]
  48. de Vries S., Grivell L. A. Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem. 1988 Sep 15;176(2):377–384. doi: 10.1111/j.1432-1033.1988.tb14292.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES