Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):697–708. doi: 10.1042/BJ20021847

Cleavage of fragments containing DNA mismatches by enzymic and chemical probes.

James Brown 1, Tom Brown 1, Keith R Fox 1
PMCID: PMC1223340  PMID: 12558499

Abstract

We prepared synthetic 50-mer DNA duplexes, each containing four mismatched base-pairs in similar positions. We examined their cleavage by DNases I and II, micrococcal nuclease (MNase), methidiumpropyl-EDTA-Fe(II) [MPE-Fe(II)] and hydroxyl radicals. We find that single mismatches only produce subtle changes in the DNase I-cleavage pattern, the most common of which is attenuated cleavage at locations 2-3 bases on the 3'-side of the mismatch. Subtle changes are also observed in most of the DNase II-cleavage patterns, although GT and GG inhibit the cleavage over longer regions and generate patterns that resemble footprints. MNase cleaves the heteroduplexes at the mismatches themselves (except for CC), and in some cases cleaves CpG and CpC steps. None of the mismatches causes any change in the cleavage patterns produced by hydroxyl radicals or MPE-Fe(II). We also examined the cleavage patterns of fragments containing tandem GA mismatches in the sequences RGAY/RGAY and YGAR/YGAR (R, purine; Y, pyrimidine). RGAY causes only subtle changes in the cleavage patterns, which are similar to those seen with single mismatches, except that there are no changes in MNase cleavage. However, YGAR inhibits DNases I and II cleavage over 4-6 bases, and attenuates MPE-Fe(II) and hydroxyl radical cleavage at 2 bases. These changes suggest that this mismatch has a more pronounced effect on the local DNA structure. These changes are discussed in terms of the structural and dynamic effects of each mismatch.

Full Text

The Full Text of this article is available as a PDF (553.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aboul-ela F., Koh D., Tinoco I., Jr, Martin F. H. Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res. 1985 Jul 11;13(13):4811–4824. doi: 10.1093/nar/13.13.4811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allawi H. T., SantaLucia J., Jr NMR solution structure of a DNA dodecamer containing single G.T mismatches. Nucleic Acids Res. 1998 Nov 1;26(21):4925–4934. doi: 10.1093/nar/26.21.4925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allawi H. T., SantaLucia J., Jr Nearest-neighbor thermodynamics of internal A.C mismatches in DNA: sequence dependence and pH effects. Biochemistry. 1998 Jun 30;37(26):9435–9444. doi: 10.1021/bi9803729. [DOI] [PubMed] [Google Scholar]
  4. Allawi H. T., SantaLucia J., Jr Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry. 1997 Aug 26;36(34):10581–10594. doi: 10.1021/bi962590c. [DOI] [PubMed] [Google Scholar]
  5. Allawi H. T., SantaLucia J., Jr Thermodynamics of internal C.T mismatches in DNA. Nucleic Acids Res. 1998 Jun 1;26(11):2694–2701. doi: 10.1093/nar/26.11.2694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benevides J. M., Wang A. H., van der Marel G. A., van Boom J. H., Thomas G. J., Jr Effect of the G.T mismatch on backbone and sugar conformations of Z-DNA and B-DNA: analysis by Raman spectroscopy of crystal and solution structures of d(CGCGTG) and d(CGCGCG). Biochemistry. 1989 Jan 10;28(1):304–310. doi: 10.1021/bi00427a041. [DOI] [PubMed] [Google Scholar]
  7. Borden K. L., Jenkins T. C., Skelly J. V., Brown T., Lane A. N. Conformational properties of the G.G mismatch in d(CGCGAATTGGCG)2 determined by NMR. Biochemistry. 1992 Jun 16;31(23):5411–5422. doi: 10.1021/bi00138a024. [DOI] [PubMed] [Google Scholar]
  8. Brown T., Hunter W. N., Kneale G., Kennard O. Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2402–2406. doi: 10.1073/pnas.83.8.2402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carbonnaux C., van der Marel G. A., van Boom J. H., Guschlbauer W., Fazakerley G. V. Solution structure of an oncogenic DNA duplex containing a G.A mismatch. Biochemistry. 1991 Jun 4;30(22):5449–5458. doi: 10.1021/bi00236a018. [DOI] [PubMed] [Google Scholar]
  10. Cheng J. W., Chou S. H., Reid B. R. Base pairing geometry in GA mismatches depends entirely on the neighboring sequence. J Mol Biol. 1992 Dec 20;228(4):1037–1041. doi: 10.1016/0022-2836(92)90312-8. [DOI] [PubMed] [Google Scholar]
  11. Chou S. H., Cheng J. W., Reid B. R. Solution structure of [d(ATGAGCGAATA)]2. Adjacent G:A mismatches stabilized by cross-strand base-stacking and BII phosphate groups. J Mol Biol. 1992 Nov 5;228(1):138–155. doi: 10.1016/0022-2836(92)90497-8. [DOI] [PubMed] [Google Scholar]
  12. Chou S. H., Tseng Y. Y., Chen Y. R., Cheng J. W. Structural studies of symmetric DNA undecamers containing non-symmetrical sheared (PuGAPu):(PyGAPy) motifs. J Biomol NMR. 1999 Jun;14(2):157–167. doi: 10.1023/a:1008351213029. [DOI] [PubMed] [Google Scholar]
  13. Cotton F. A., Hazen E. E., Jr, Legg M. J. Staphylococcal nuclease: proposed mechanism of action based on structure of enzyme-thymidine 3',5'-bisphosphate-calcium ion complex at 1.5-A resolution. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2551–2555. doi: 10.1073/pnas.76.6.2551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Drew H. R. Structural specificities of five commonly used DNA nucleases. J Mol Biol. 1984 Jul 15;176(4):535–557. doi: 10.1016/0022-2836(84)90176-1. [DOI] [PubMed] [Google Scholar]
  15. Drew H. R., Travers A. A. DNA structural variations in the E. coli tyrT promoter. Cell. 1984 Jun;37(2):491–502. doi: 10.1016/0092-8674(84)90379-9. [DOI] [PubMed] [Google Scholar]
  16. Ebel S., Lane A. N., Brown T. Very stable mismatch duplexes: structural and thermodynamic studies on tandem G.A mismatches in DNA. Biochemistry. 1992 Dec 8;31(48):12083–12086. doi: 10.1021/bi00163a017. [DOI] [PubMed] [Google Scholar]
  17. Flick J. T., Eissenberg J. C., Elgin S. C. Micrococcal nuclease as a DNA structural probe: its recognition sequences, their genomic distribution and correlation with DNA structure determinants. J Mol Biol. 1986 Aug 20;190(4):619–633. doi: 10.1016/0022-2836(86)90247-0. [DOI] [PubMed] [Google Scholar]
  18. Fox K. R., Waring M. J. The use of micrococcal nuclease as a probe for drug-binding sites on DNA. Biochim Biophys Acta. 1987 Jul 14;909(2):145–155. doi: 10.1016/0167-4781(87)90036-4. [DOI] [PubMed] [Google Scholar]
  19. Herrera J. E., Chaires J. B. Characterization of preferred deoxyribonuclease I cleavage sites. J Mol Biol. 1994 Feb 18;236(2):405–411. doi: 10.1006/jmbi.1994.1152. [DOI] [PubMed] [Google Scholar]
  20. Hertzberg R. P., Dervan P. B. Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry. 1984 Aug 14;23(17):3934–3945. doi: 10.1021/bi00312a022. [DOI] [PubMed] [Google Scholar]
  21. Hunter W. N., Brown T., Kennard O. Structural features and hydration of d(C-G-C-G-A-A-T-T-A-G-C-G); a double helix containing two G.A mispairs. J Biomol Struct Dyn. 1986 Oct;4(2):173–191. doi: 10.1080/07391102.1986.10506338. [DOI] [PubMed] [Google Scholar]
  22. Hunter W. N., Brown T., Kneale G., Anand N. N., Rabinovich D., Kennard O. The structure of guanosine-thymidine mismatches in B-DNA at 2.5-A resolution. J Biol Chem. 1987 Jul 25;262(21):9962–9970. doi: 10.2210/pdb113d/pdb. [DOI] [PubMed] [Google Scholar]
  23. Kan L. S., Chandrasegaran S., Pulford S. M., Miller P. S. Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4263–4265. doi: 10.1073/pnas.80.14.4263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ke S. H., Wartell R. M. Influence of nearest neighbor sequence on the stability of base pair mismatches in long DNA; determination by temperature-gradient gel electrophoresis. Nucleic Acids Res. 1993 Nov 11;21(22):5137–5143. doi: 10.1093/nar/21.22.5137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ke S. H., Wartell R. M. The thermal stability of DNA fragments with tandem mismatches at a d(CXYG).d(CY'X'G) site. Nucleic Acids Res. 1996 Feb 15;24(4):707–712. doi: 10.1093/nar/24.4.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kneale G., Brown T., Kennard O., Rabinovich D. G . T base-pairs in a DNA helix: the crystal structure of d(G-G-G-G-T-C-C-C). J Mol Biol. 1985 Dec 20;186(4):805–814. doi: 10.1016/0022-2836(85)90398-5. [DOI] [PubMed] [Google Scholar]
  27. Lane A. N., Peck B. Conformational flexibility in DNA duplexes containing single G.G mismatches. Eur J Biochem. 1995 Jun 15;230(3):1073–1087. doi: 10.1111/j.1432-1033.1995.tb20658.x. [DOI] [PubMed] [Google Scholar]
  28. Lane A., Ebel S. y., Brown T. Properties of multiple G.A mismatches in stable oligonucleotide duplexes. Eur J Biochem. 1994 Mar 15;220(3):717–727. doi: 10.1111/j.1432-1033.1994.tb18672.x. [DOI] [PubMed] [Google Scholar]
  29. Lane A., Martin S. R., Ebel S., Brown T. Solution conformation of a deoxynucleotide containing tandem G.A mismatched base pairs and 3'-overhanging ends in d(GTGAACTT)2. Biochemistry. 1992 Dec 8;31(48):12087–12095. doi: 10.1021/bi00163a018. [DOI] [PubMed] [Google Scholar]
  30. Leonard G. A., Booth E. D., Brown T. Structural and thermodynamic studies on the adenine.guanine mismatch in B-DNA. Nucleic Acids Res. 1990 Oct 11;18(19):5617–5623. doi: 10.1093/nar/18.19.5617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Li Y., Agrawal S. Oligonucleotides containing G.A pairs: effect of flanking sequences on structure and stability. Biochemistry. 1995 Aug 8;34(31):10056–10062. doi: 10.1021/bi00031a030. [DOI] [PubMed] [Google Scholar]
  32. Li Y., Zon G., Wilson W. D. NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):26–30. doi: 10.1073/pnas.88.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Li Y., Zon G., Wilson W. D. Thermodynamics of DNA duplexes with adjacent G.A mismatches. Biochemistry. 1991 Jul 30;30(30):7566–7572. doi: 10.1021/bi00244a028. [DOI] [PubMed] [Google Scholar]
  34. Loeb L. A., Kunkel T. A. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51:429–457. doi: 10.1146/annurev.bi.51.070182.002241. [DOI] [PubMed] [Google Scholar]
  35. Loll P. J., Lattman E. E. The crystal structure of the ternary complex of staphylococcal nuclease, Ca2+, and the inhibitor pdTp, refined at 1.65 A. Proteins. 1989;5(3):183–201. doi: 10.1002/prot.340050302. [DOI] [PubMed] [Google Scholar]
  36. Loll P. J., Quirk S., Lattman E. E., Garavito R. M. X-ray crystal structures of staphylococcal nuclease complexed with the competitive inhibitor cobalt(II) and nucleotide. Biochemistry. 1995 Apr 4;34(13):4316–4324. doi: 10.1021/bi00013a021. [DOI] [PubMed] [Google Scholar]
  37. Nikonowicz E. P., Meadows R. P., Fagan P., Gorenstein D. G. NMR structural refinement of a tandem G.A mismatched decamer d(CCAAGATTGG)2 via the hybrid matrix procedure. Biochemistry. 1991 Feb 5;30(5):1323–1334. doi: 10.1021/bi00219a024. [DOI] [PubMed] [Google Scholar]
  38. Nikonowicz E. P., Meadows R. P., Fagan P., Gorenstein D. G. NMR structural refinement of a tandem G.A mismatched decamer d(CCAAGATTGG)2 via the hybrid matrix procedure. Biochemistry. 1991 Feb 5;30(5):1323–1334. doi: 10.1021/bi00219a024. [DOI] [PubMed] [Google Scholar]
  39. Patel D. J., Kozlowski S. A., Ikuta S., Itakura K. Dynamics of DNA duplexes containing internal G.T, G.A, A.C, and T.C pairs: hydrogen exchange at and adjacent to mismatch sites. Fed Proc. 1984 Aug;43(11):2663–2670. [PubMed] [Google Scholar]
  40. Peyret N., Seneviratne P. A., Allawi H. T., SantaLucia J., Jr Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry. 1999 Mar 23;38(12):3468–3477. doi: 10.1021/bi9825091. [DOI] [PubMed] [Google Scholar]
  41. Price M. A., Tullius T. D. How the structure of an adenine tract depends on sequence context: a new model for the structure of TnAn DNA sequences. Biochemistry. 1993 Jan 12;32(1):127–136. doi: 10.1021/bi00052a018. [DOI] [PubMed] [Google Scholar]
  42. Price M. A., Tullius T. D. Using hydroxyl radical to probe DNA structure. Methods Enzymol. 1992;212:194–219. doi: 10.1016/0076-6879(92)12013-g. [DOI] [PubMed] [Google Scholar]
  43. Privé G. G., Heinemann U., Chandrasegaran S., Kan L. S., Kopka M. L., Dickerson R. E. Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science. 1987 Oct 23;238(4826):498–504. doi: 10.1126/science.3310237. [DOI] [PubMed] [Google Scholar]
  44. Rajski S. R., Jackson B. A., Barton J. K. DNA repair: models for damage and mismatch recognition. Mutat Res. 2000 Jan 17;447(1):49–72. doi: 10.1016/s0027-5107(99)00195-5. [DOI] [PubMed] [Google Scholar]
  45. Shafer G. E., Price M. A., Tullius T. D. Use of the hydroxyl radical and gel electrophoresis to study DNA structure. Electrophoresis. 1989 May-Jun;10(5-6):397–404. doi: 10.1002/elps.1150100518. [DOI] [PubMed] [Google Scholar]
  46. Suck D., Lahm A., Oefner C. Structure refined to 2A of a nicked DNA octanucleotide complex with DNase I. Nature. 1988 Mar 31;332(6163):464–468. doi: 10.1038/332464a0. [DOI] [PubMed] [Google Scholar]
  47. Suck D., Oefner C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature. 1986 Jun 5;321(6070):620–625. doi: 10.1038/321620a0. [DOI] [PubMed] [Google Scholar]
  48. Voigt J. M., Topal M. D. O6-methylguanine and A.C and G.T mismatches cause asymmetric structural defects in DNA that are affected by DNA sequence. Biochemistry. 1990 May 29;29(21):5012–5018. doi: 10.1021/bi00473a003. [DOI] [PubMed] [Google Scholar]
  49. Wang J., Truckses D. M., Abildgaard F., Dzakula Z., Zolnai Z., Markley J. L. Solution structures of staphylococcal nuclease from multidimensional, multinuclear NMR: nuclease-H124L and its ternary complex with Ca2+ and thymidine-3',5'-bisphosphate. J Biomol NMR. 1997 Sep;10(2):143–164. doi: 10.1023/a:1018350004729. [DOI] [PubMed] [Google Scholar]
  50. Webster G. D., Sanderson M. R., Skelly J. V., Neidle S., Swann P. F., Li B. F., Tickle I. J. Crystal structure and sequence-dependent conformation of the A.G mispaired oligonucleotide d(CGCAAGCTGGCG). Proc Natl Acad Sci U S A. 1990 Sep;87(17):6693–6697. doi: 10.1073/pnas.87.17.6693. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES