Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):811–821. doi: 10.1042/BJ20021814

Troponin C in different insect muscle types: identification of two isoforms in Lethocerus, Drosophila and Anopheles that are specific to asynchronous flight muscle in the adult insect.

Feng Qiu 1, Anne Lakey 1, Bogos Agianian 1, Amanda Hutchings 1, Geoffrey W Butcher 1, Siegfried Labeit 1, Kevin Leonard 1, Belinda Bullard 1
PMCID: PMC1223341  PMID: 12558500

Abstract

The indirect flight muscles (IFMs) of Lethocerus (giant water bug) and Drosophila (fruitfly) are asynchronous: oscillatory contractions are produced by periodic stretches in the presence of a Ca(2+) concentration that does not fully activate the muscle. The troponin complex on thin filaments regulates contraction in striated muscle. The complex in IFM has subunits that are specific to this muscle type, and stretch activation may act through troponin. Lethocerus and Drosophila have an unusual isoform of the Ca(2+)-binding subunit of troponin, troponin C (TnC), with a single Ca(2+)-binding site near the C-terminus (domain IV); this isoform is only in IFMs, together with a minor isoform with an additional Ca(2+)-binding site in the N-terminal region (domain II). Lethocerus has another TnC isoform in leg muscle which also has two Ca(2+)-binding sites. Ca(2+) binds more strongly to domain IV than to domain II in two-site isoforms. There are four isoforms in Drosophila and Anopheles (malarial mosquito), three of which are also in adult Lethocerus. A larval isoform has not been identified in Lethocerus. Different TnC isoforms are expressed in the embryonic, larval, pupal and adult stages of Drosophila; the expression of the two IFM isoforms is increased in the pupal stage. Immunoelectron microscopy shows the distribution of the major IFM isoform with one Ca(2+)-binding site is uniform along Lethocerus thin filaments. We suggest that initial activation of IFM is by Ca(2+) binding to troponin with the two-site TnC, and full activation is through the action of stretch on the complex with the one-site isoform.

Full Text

The Full Text of this article is available as a PDF (392.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allhouse L. D., Guzman G., Miller T., Li Q., Potter J. D., Ashley C. C. Characterisation of a mutant of barnacle troponin C lacking Ca2+-binding sites at positions II and IV. Pflugers Arch. 1999 Jun;438(1):30–39. doi: 10.1007/s004240050876. [DOI] [PubMed] [Google Scholar]
  2. Allhouse L. D., Li Q., Guzman G., Miller T., Lipscomb S., Potter J. D., Ashley C. C. Investigating the role of Ca2+-binding site IV in barnacle troponin C. Pflugers Arch. 2000 Mar;439(5):600–609. doi: 10.1007/s004249900216. [DOI] [PubMed] [Google Scholar]
  3. Barbas J. A., Galceran J., Krah-Jentgens I., de la Pompa J. L., Canal I., Pongs O., Ferrús A. Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes Dev. 1991 Jan;5(1):132–140. doi: 10.1101/gad.5.1.132. [DOI] [PubMed] [Google Scholar]
  4. Beall C. J., Fyrberg E. Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant troponin-I isoforms. J Cell Biol. 1991 Sep;114(5):941–951. doi: 10.1083/jcb.114.5.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein S. I., O'Donnell P. T., Cripps R. M. Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int Rev Cytol. 1993;143:63–152. doi: 10.1016/s0074-7696(08)61874-4. [DOI] [PubMed] [Google Scholar]
  6. Bullard B., Leonard K., Larkins A., Butcher G., Karlik C., Fyrberg E. Troponin of asynchronous flight muscle. J Mol Biol. 1988 Dec 5;204(3):621–637. doi: 10.1016/0022-2836(88)90360-9. [DOI] [PubMed] [Google Scholar]
  7. Collins J. H. Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J Muscle Res Cell Motil. 1991 Feb;12(1):3–25. doi: 10.1007/BF01781170. [DOI] [PubMed] [Google Scholar]
  8. Collins J. H., Theibert J. L., Francois J. M., Ashley C. C., Potter J. D. Amino acid sequences and Ca2(+)-binding properties of two isoforms of barnacle troponin C. Biochemistry. 1991 Jan 22;30(3):702–707. doi: 10.1021/bi00217a017. [DOI] [PubMed] [Google Scholar]
  9. Farah C. S., Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J. 1995 Jun;9(9):755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
  10. Fyrberg C., Parker H., Hutchison B., Fyrberg E. Drosophila melanogaster genes encoding three troponin-C isoforms and a calmodulin-related protein. Biochem Genet. 1994 Apr;32(3-4):119–135. doi: 10.1007/BF00554420. [DOI] [PubMed] [Google Scholar]
  11. Garone L., Theibert J. L., Miegel A., Maeda Y., Murphy C., Collins J. H. Lobster troponin C: amino acid sequences of three isoforms. Arch Biochem Biophys. 1991 Nov 15;291(1):89–91. doi: 10.1016/0003-9861(91)90108-u. [DOI] [PubMed] [Google Scholar]
  12. Goldstein L. S., Gunawardena S. Flying through the drosophila cytoskeletal genome. J Cell Biol. 2000 Jul 24;150(2):F63–F68. doi: 10.1083/jcb.150.2.f63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hincke M. T. Routine detection of calcium-binding proteins following their adsorption to nitrocellulose membrane filters. Anal Biochem. 1988 Apr;170(1):256–263. doi: 10.1016/0003-2697(88)90116-9. [DOI] [PubMed] [Google Scholar]
  14. Hiromi Y., Hotta Y. Actin gene mutations in Drosophila; heat shock activation in the indirect flight muscles. EMBO J. 1985 Jul;4(7):1681–1687. doi: 10.1002/j.1460-2075.1985.tb03837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holt Robert A., Subramanian G. Mani, Halpern Aaron, Sutton Granger G., Charlab Rosane, Nusskern Deborah R., Wincker Patrick, Clark Andrew G., Ribeiro José M. C., Wides Ron. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002 Oct 4;298(5591):129–149. doi: 10.1126/science.1076181. [DOI] [PubMed] [Google Scholar]
  16. Johnson J. D., Collins J. H., Robertson S. P., Potter J. D. A fluorescent probe study of Ca2+ binding to the Ca2+-specific sites of cardiac troponin and troponin C. J Biol Chem. 1980 Oct 25;255(20):9635–9640. [PubMed] [Google Scholar]
  17. Karlik C. C., Fyrberg E. A. Two Drosophila melanogaster tropomyosin genes: structural and functional aspects. Mol Cell Biol. 1986 Jun;6(6):1965–1973. doi: 10.1128/mcb.6.6.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kobayashi T., Kagami O., Takagi T., Konishi K. Amino acid sequence of horseshoe crab, Tachypleus tridentatus, striated muscle troponin C. J Biochem. 1989 May;105(5):823–828. doi: 10.1093/oxfordjournals.jbchem.a122752. [DOI] [PubMed] [Google Scholar]
  19. Kobayashi T., Takagi T., Konishi K., Wnuk W. Amino acid sequences of the two major isoforms of troponin C from crayfish. J Biol Chem. 1989 Oct 25;264(30):18247–18259. [PubMed] [Google Scholar]
  20. Kretsinger R. H., Nockolds C. E. Carp muscle calcium-binding protein. II. Structure determination and general description. J Biol Chem. 1973 May 10;248(9):3313–3326. [PubMed] [Google Scholar]
  21. Lakey A., Ferguson C., Labeit S., Reedy M., Larkins A., Butcher G., Leonard K., Bullard B. Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 1990 Nov;9(11):3459–3467. doi: 10.1002/j.1460-2075.1990.tb07554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lehman W., Bullard B., Hammond K. Calcium-dependent myosin from insect flight muscles. J Gen Physiol. 1974 May;63(5):553–563. doi: 10.1085/jgp.63.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lehman W., Craig R., Vibert P. Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature. 1994 Mar 3;368(6466):65–67. doi: 10.1038/368065a0. [DOI] [PubMed] [Google Scholar]
  24. Lehman W., Szent-Györgyi A. G. Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol. 1975 Jul;66(1):1–30. doi: 10.1085/jgp.66.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lehman W., Vibert P., Uman P., Craig R. Steric-blocking by tropomyosin visualized in relaxed vertebrate muscle thin filaments. J Mol Biol. 1995 Aug 11;251(2):191–196. doi: 10.1006/jmbi.1995.0425. [DOI] [PubMed] [Google Scholar]
  26. Maytum R., Lehrer S. S., Geeves M. A. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry. 1999 Jan 19;38(3):1102–1110. doi: 10.1021/bi981603e. [DOI] [PubMed] [Google Scholar]
  27. Mierendorf R. C., Percy C., Young R. A. Gene isolation by screening lambda gt11 libraries with antibodies. Methods Enzymol. 1987;152:458–469. doi: 10.1016/0076-6879(87)52054-7. [DOI] [PubMed] [Google Scholar]
  28. Mogami K., Hotta Y. Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol Gen Genet. 1981;183(3):409–417. doi: 10.1007/BF00268758. [DOI] [PubMed] [Google Scholar]
  29. Nishita K., Tanaka H., Ojima T. Amino acid sequence of troponin C from scallop striated adductor muscle. J Biol Chem. 1994 Feb 4;269(5):3464–3468. [PubMed] [Google Scholar]
  30. Ojima T., Koizumi N., Ueyama K., Inoue A., Nishita K. Functional role of Ca(2+)-binding site IV of scallop troponin C. J Biochem. 2000 Nov;128(5):803–809. doi: 10.1093/oxfordjournals.jbchem.a022818. [DOI] [PubMed] [Google Scholar]
  31. Ojima T., Ohta T., Nishita K. Amino acid sequence of squid troponin C. Comp Biochem Physiol B Biochem Mol Biol. 2001 Jul;129(4):787–796. doi: 10.1016/s1096-4959(01)00397-9. [DOI] [PubMed] [Google Scholar]
  32. Parry D. A., Squire J. M. Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol. 1973 Mar 25;75(1):33–55. doi: 10.1016/0022-2836(73)90527-5. [DOI] [PubMed] [Google Scholar]
  33. Perry S. V. Troponin I: inhibitor or facilitator. Mol Cell Biochem. 1999 Jan;190(1-2):9–32. [PubMed] [Google Scholar]
  34. Perry S. V. Troponin T: genetics, properties and function. J Muscle Res Cell Motil. 1998 Aug;19(6):575–602. doi: 10.1023/a:1005397501968. [DOI] [PubMed] [Google Scholar]
  35. Potter J. D., Gergely J. The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem. 1975 Jun 25;250(12):4628–4633. [PubMed] [Google Scholar]
  36. Pringle J. W. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc R Soc Lond B Biol Sci. 1978 May 5;201(1143):107–130. doi: 10.1098/rspb.1978.0035. [DOI] [PubMed] [Google Scholar]
  37. Reedy M. K., Reedy M. C. Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J Mol Biol. 1985 Sep 5;185(1):145–176. doi: 10.1016/0022-2836(85)90188-3. [DOI] [PubMed] [Google Scholar]
  38. Shiraishi F., Morimoto S., Nishita K., Ojima T., Ohtsuki I. Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca(2+)-sensitive ATPase activity of myofibrils from scallop striated muscle. J Biochem. 1999 Dec;126(6):1020–1024. doi: 10.1093/oxfordjournals.jbchem.a022545. [DOI] [PubMed] [Google Scholar]
  39. Tanaka Y., Maruyama K., Mikawa T., Hotta Y. Identification of calcium binding proteins in two-dimensional gel electrophoretic pattern of Drosophila thorax and their distribution in two types of muscles. J Biochem. 1988 Oct;104(4):489–491. doi: 10.1093/oxfordjournals.jbchem.a122495. [DOI] [PubMed] [Google Scholar]
  40. Terami H., Williams B. D., Kitamura S. i., Sakube Y., Matsumoto S., Doi S., Obinata T., Kagawa H. Genomic organization, expression, and analysis of the troponin C gene pat-10 of Caenorhabditis elegans. J Cell Biol. 1999 Jul 12;146(1):193–202. doi: 10.1083/jcb.146.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ueda T., Katsuzaki H., Terami H., Ohtsuka H., Kagawa H., Murase T., Kajiwara Y., Yoshioka O., Iio T. Calcium-bindings of wild type and mutant troponin Cs of Caenorhabditis elegans. Biochim Biophys Acta. 2001 Aug 13;1548(2):220–228. doi: 10.1016/s0167-4838(01)00234-5. [DOI] [PubMed] [Google Scholar]
  42. Vibert P., Craig R., Lehman W. Steric-model for activation of muscle thin filaments. J Mol Biol. 1997 Feb 14;266(1):8–14. doi: 10.1006/jmbi.1996.0800. [DOI] [PubMed] [Google Scholar]
  43. Wnuk W. Resolution and calcium-binding properties of the two major isoforms of troponin C from crayfish. J Biol Chem. 1989 Oct 25;264(30):18240–18246. [PubMed] [Google Scholar]
  44. Zot A. S., Potter J. D. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem. 1987;16:535–559. doi: 10.1146/annurev.bb.16.060187.002535. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES