Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):917–925. doi: 10.1042/BJ20021331

Protein kinase CK2 phosphorylates Hsp105 alpha at Ser509 and modulates its function.

Keiichi Ishihara 1, Nobuyuki Yamagishi 1, Takumi Hatayama 1
PMCID: PMC1223342  PMID: 12558502

Abstract

The 105 kDa heat-shock protein (Hsp) Hsp105 alpha is a mammalian stress protein that belongs to the HSP105/HSP110 family. We have shown previously that Hsp105 alpha exists as non-phosphorylated and phosphorylated forms in vivo, and is phosphorylated by protein kinase CK2 (CK2) in vitro. In this study, to elucidate the role of phosphorylation of Hsp105 alpha, we first analysed the site of phosphorylation of Hsp105 alpha by CK2. Peptide mapping analysis of Hsp105 alpha phosphorylated by CK2 and in vitro phosphorylation experiments using various deletion and substitution mutants of Hsp105 alpha revealed that Hsp105 alpha is phosphorylated at Ser(509) in the beta-sheet domain. Furthermore, Ser(509) in Hsp105 alpha was also phosphorylated in mammalian COS-7 cells, although other sites were phosphorylated as well. Next, we examined the effects of phosphorylation of Hsp105 alpha on its functions using CK2-phosphorylated Hsp105 alpha. Interestingly, Hsp105 alpha suppressed 70 kDa heat-shock cognate protein (Hsc70)-mediated protein folding, whereas the phosphorylation of Hsp105 alpha at Ser(509) abolished the inhibitory activity of Hsp105 alpha in vitro. In accordance with these findings, wild-type Hsp105 alpha, which was thought to be phosphorylated in vivo, had no effect on Hsp70-mediated refolding of heat-denatured luciferase, whereas a non-phosphorylatable mutant of Hsp105 alpha suppressed the Hsp70-mediated refolding of heat-denatured luciferase in mammalian cells. Thus it was suggested that CK2 phosphorylates Hsp105 alpha at Ser(509) and modulates the function of Hsp105 alpha. The regulation of Hsp105 alpha function by phosphorylation may play an important role in a variety of cellular events.

Full Text

The Full Text of this article is available as a PDF (320.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballinger C. A., Connell P., Wu Y., Hu Z., Thompson L. J., Yin L. Y., Patterson C. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol. 1999 Jun;19(6):4535–4545. doi: 10.1128/mcb.19.6.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
  3. Bukau B., Horwich A. L. The Hsp70 and Hsp60 chaperone machines. Cell. 1998 Feb 6;92(3):351–366. doi: 10.1016/s0092-8674(00)80928-9. [DOI] [PubMed] [Google Scholar]
  4. Craig E. A., Weissman J. S., Horwich A. L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994 Aug 12;78(3):365–372. doi: 10.1016/0092-8674(94)90416-2. [DOI] [PubMed] [Google Scholar]
  5. Freeman B. C., Myers M. P., Schumacher R., Morimoto R. I. Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J. 1995 May 15;14(10):2281–2292. doi: 10.1002/j.1460-2075.1995.tb07222.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fung K. L., Hilgenberg L., Wang N. M., Chirico W. J. Conformations of the nucleotide and polypeptide binding domains of a cytosolic Hsp70 molecular chaperone are coupled. J Biol Chem. 1996 Aug 30;271(35):21559–21565. doi: 10.1074/jbc.271.35.21559. [DOI] [PubMed] [Google Scholar]
  7. Guerra B., Issinger O. G. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis. 1999 Feb;20(2):391–408. doi: 10.1002/(SICI)1522-2683(19990201)20:2<391::AID-ELPS391>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
  8. Hagemann C., Kalmes A., Wixler V., Wixler L., Schuster T., Rapp U. R. The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett. 1997 Feb 17;403(2):200–202. doi: 10.1016/s0014-5793(97)00011-2. [DOI] [PubMed] [Google Scholar]
  9. Hartl F. U. Molecular chaperones in cellular protein folding. Nature. 1996 Jun 13;381(6583):571–579. doi: 10.1038/381571a0. [DOI] [PubMed] [Google Scholar]
  10. Hatayama T., Honda K., Yukioka M. HeLa cells synthesize a specific heat shock protein upon exposure to heat shock at 42 degrees C but not at 45 degrees C. Biochem Biophys Res Commun. 1986 Jun 30;137(3):957–963. doi: 10.1016/0006-291x(86)90318-9. [DOI] [PubMed] [Google Scholar]
  11. Hatayama T., Yamagishi N., Minobe E., Sakai K. Role of hsp105 in protection against stress-induced apoptosis in neuronal PC12 cells. Biochem Biophys Res Commun. 2001 Nov 2;288(3):528–534. doi: 10.1006/bbrc.2001.5802. [DOI] [PubMed] [Google Scholar]
  12. Hatayama T., Yasuda K., Nishiyama E. Characterization of high-molecular-mass heat shock proteins and 42 degrees C-specific heat shock proteins of murine cells. Biochem Biophys Res Commun. 1994 Oct 14;204(1):357–365. doi: 10.1006/bbrc.1994.2467. [DOI] [PubMed] [Google Scholar]
  13. Hatayama T., Yasuda K., Yasuda K. Association of HSP105 with HSC70 in high molecular mass complexes in mouse FM3A cells. Biochem Biophys Res Commun. 1998 Jul 20;248(2):395–401. doi: 10.1006/bbrc.1998.8979. [DOI] [PubMed] [Google Scholar]
  14. Honda K., Hatayama T., Yukioka M. Characterization of a 42 degrees C-specific heat shock protein of mammalian cells. J Biochem. 1988 Jan;103(1):81–85. doi: 10.1093/oxfordjournals.jbchem.a122244. [DOI] [PubMed] [Google Scholar]
  15. Honda K., Hatayama T., Yukioka M. Common antigenicity of mouse 42 degrees C-specific heat-shock protein with mouse HSP 105. Biochem Biophys Res Commun. 1989 Apr 14;160(1):60–66. doi: 10.1016/0006-291x(89)91620-3. [DOI] [PubMed] [Google Scholar]
  16. Höhfeld J., Minami Y., Hartl F. U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell. 1995 Nov 17;83(4):589–598. doi: 10.1016/0092-8674(95)90099-3. [DOI] [PubMed] [Google Scholar]
  17. Ishihara K., Yasuda K., Hatayama T. Molecular cloning, expression and localization of human 105 kDa heat shock protein, hsp105. Biochim Biophys Acta. 1999 Jan 18;1444(1):138–142. doi: 10.1016/s0167-4781(98)00254-1. [DOI] [PubMed] [Google Scholar]
  18. Ishihara K., Yasuda K., Hatayama T. Phosphorylation of the 105-kDa heat shock proteins, HSP105alpha and HSP105beta, by casein kinase II. Biochem Biophys Res Commun. 2000 Apr 21;270(3):927–931. doi: 10.1006/bbrc.2000.2541. [DOI] [PubMed] [Google Scholar]
  19. Kaneko Y., Nishiyama H., Nonoguchi K., Higashitsuji H., Kishishita M., Fujita J. A novel hsp110-related gene, apg-1, that is abundantly expressed in the testis responds to a low temperature heat shock rather than the traditional elevated temperatures. J Biol Chem. 1997 Jan 31;272(5):2640–2645. doi: 10.1074/jbc.272.5.2640. [DOI] [PubMed] [Google Scholar]
  20. Lebrin F., Chambaz E. M., Bianchini L. A role for protein kinase CK2 in cell proliferation: evidence using a kinase-inactive mutant of CK2 catalytic subunit alpha. Oncogene. 2001 Apr 12;20(16):2010–2022. doi: 10.1038/sj.onc.1204307. [DOI] [PubMed] [Google Scholar]
  21. Lee-Yoon D., Easton D., Murawski M., Burd R., Subjeck J. R. Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein. J Biol Chem. 1995 Jun 30;270(26):15725–15733. doi: 10.1074/jbc.270.26.15725. [DOI] [PubMed] [Google Scholar]
  22. McCarty J. S., Buchberger A., Reinstein J., Bukau B. The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol. 1995 May 26;249(1):126–137. doi: 10.1006/jmbi.1995.0284. [DOI] [PubMed] [Google Scholar]
  23. Michels A. A., Kanon B., Konings A. W., Ohtsuka K., Bensaude O., Kampinga H. H. Hsp70 and Hsp40 chaperone activities in the cytoplasm and the nucleus of mammalian cells. J Biol Chem. 1997 Dec 26;272(52):33283–33289. doi: 10.1074/jbc.272.52.33283. [DOI] [PubMed] [Google Scholar]
  24. Mukai H., Kuno T., Tanaka H., Hirata D., Miyakawa T., Tanaka C. Isolation and characterization of SSE1 and SSE2, new members of the yeast HSP70 multigene family. Gene. 1993 Sep 30;132(1):57–66. doi: 10.1016/0378-1119(93)90514-4. [DOI] [PubMed] [Google Scholar]
  25. Pinna L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. doi: 10.1016/0167-4889(90)90098-x. [DOI] [PubMed] [Google Scholar]
  26. Plesofsky-Vig N., Brambl R. Characterization of an 88-kDa heat shock protein of Neurospora crassa that interacts with Hsp30. J Biol Chem. 1998 May 1;273(18):11335–11341. doi: 10.1074/jbc.273.18.11335. [DOI] [PubMed] [Google Scholar]
  27. Rüdiger S., Buchberger A., Bukau B. Interaction of Hsp70 chaperones with substrates. Nat Struct Biol. 1997 May;4(5):342–349. doi: 10.1038/nsb0597-342. [DOI] [PubMed] [Google Scholar]
  28. Schlossman D. M., Schmid S. L., Braell W. A., Rothman J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):723–733. doi: 10.1083/jcb.99.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Storozhenko S., De Pauw P., Kushnir S., Van Montagu M., Inzé D. Identification of an Arabidopsis thaliana cDNA encoding a HSP70-related protein belonging to the HSP110/SSE1 subfamily. FEBS Lett. 1996 Jul 15;390(1):113–118. doi: 10.1016/0014-5793(96)00640-0. [DOI] [PubMed] [Google Scholar]
  30. Takayama S., Bimston D. N., Matsuzawa S., Freeman B. C., Aime-Sempe C., Xie Z., Morimoto R. I., Reed J. C. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 1997 Aug 15;16(16):4887–4896. doi: 10.1093/emboj/16.16.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wakatsuki T., Hatayama T. Characteristic expression of 105-kDa heat shock protein (HSP105) in various tissues of nonstressed and heat-stressed rats. Biol Pharm Bull. 1998 Sep;21(9):905–910. doi: 10.1248/bpb.21.905. [DOI] [PubMed] [Google Scholar]
  32. Wang X. Y., Chen X., Oh H. J., Repasky E., Kazim L., Subjeck J. Characterization of native interaction of hsp110 with hsp25 and hsc70. FEBS Lett. 2000 Jan 14;465(2-3):98–102. doi: 10.1016/s0014-5793(99)01733-0. [DOI] [PubMed] [Google Scholar]
  33. Yamagishi N., Nishihori H., Ishihara K., Ohtsuka K., Hatayama T. Modulation of the chaperone activities of Hsc70/Hsp40 by Hsp105alpha and Hsp105beta. Biochem Biophys Res Commun. 2000 Jun 16;272(3):850–855. doi: 10.1006/bbrc.2000.2864. [DOI] [PubMed] [Google Scholar]
  34. Yasuda K., Ishihara K., Nakashima K., Hatayama T. Genomic cloning and promoter analysis of the mouse 105-kDa heat shock protein (HSP105) gene. Biochem Biophys Res Commun. 1999 Mar 5;256(1):75–80. doi: 10.1006/bbrc.1999.0283. [DOI] [PubMed] [Google Scholar]
  35. Yasuda K., Nakai A., Hatayama T., Nagata K. Cloning and expression of murine high molecular mass heat shock proteins, HSP105. J Biol Chem. 1995 Dec 15;270(50):29718–29723. doi: 10.1074/jbc.270.50.29718. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES