Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):973–980. doi: 10.1042/BJ20021769

The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling.

Hyeseon Cho 1, Kathleen Harrison 1, Owen Schwartz 1, John H Kehrl 1
PMCID: PMC1223344  PMID: 12564955

Abstract

Normal cardiovascular development and physiology depend in part upon signalling through G-protein-coupled receptors (GPCRs), such as the angiotensin II type 1 (AT(1)) receptor, sphingosine 1-phosphate (S1P) receptors and endothelin-1 (ET-1) receptor. Since regulator of G-protein signalling (RGS) proteins function as GTPase-activating proteins for the G alpha subunit of heterotrimeric G-proteins, these proteins undoubtedly have functional roles in the cardiovascular system. In the present paper, we show that human aorta and heart differentially express RGS1, RGS2, RGS3S (short-form), RGS3L (long-form), PDZ-RGS3 (PDZ domain-containing) and RGS4. The aorta prominently expresses mRNAs for all these RGS proteins except PDZ-RGS3. Various stimuli that are critical for both cardiovascular development and function regulate dynamically the mRNA levels of several of these RGS proteins in primary human aortic smooth muscle cells. Both RGS1 and RGS3 inhibit signalling through the S1P(1) (formerly known as EDG-1), S1P(2) (formerly known as EDG-5) and S1P(3) (formerly known as EDG-3) receptors, whereas RGS2 and RGS4 selectively attenuate S1P(2)-and S1P(3)-receptor signalling respectively. All of the tested RGS proteins inhibit AT(1)-receptor signalling, whereas only RGS3 and, to a lesser extent, RGS4 inhibit ET(A)-receptor signalling. The conspicuous expression of RGS proteins in the cardiovascular system and their selective effects on relevant GPCR-signalling pathways provide additional evidence that they have functional roles in cardiovascular development and physiology.

Full Text

The Full Text of this article is available as a PDF (255.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams L. D., Geary R. L., McManus B., Schwartz S. M. A comparison of aorta and vena cava medial message expression by cDNA array analysis identifies a set of 68 consistently differentially expressed genes, all in aortic media. Circ Res. 2000 Sep 29;87(7):623–631. doi: 10.1161/01.res.87.7.623. [DOI] [PubMed] [Google Scholar]
  2. Alderton F., Rakhit S., Kong K. C., Palmer T., Sambi B., Pyne S., Pyne N. J. Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem. 2001 May 18;276(30):28578–28585. doi: 10.1074/jbc.M102771200. [DOI] [PubMed] [Google Scholar]
  3. Bowman E. P., Campbell J. J., Druey K. M., Scheschonka A., Kehrl J. H., Butcher E. C. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J Biol Chem. 1998 Oct 23;273(43):28040–28048. doi: 10.1074/jbc.273.43.28040. [DOI] [PubMed] [Google Scholar]
  4. Chen C. K., Burns M. E., He W., Wensel T. G., Baylor D. A., Simon M. I. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1. Nature. 2000 Feb 3;403(6769):557–560. doi: 10.1038/35000601. [DOI] [PubMed] [Google Scholar]
  5. Cramer H., Schmenger K., Heinrich K., Horstmeyer A., Böning H., Breit A., Piiper A., Lundstrom K., Müller-Esterl W., Schroeder C. Coupling of endothelin receptors to the ERK/MAP kinase pathway. Roles of palmitoylation and G(alpha)q. Eur J Biochem. 2001 Oct;268(20):5449–5459. doi: 10.1046/j.0014-2956.2001.02486.x. [DOI] [PubMed] [Google Scholar]
  6. Demoliou-Mason C. D. G-protein-coupled receptors in vascular smooth muscle cells. Biol Signals Recept. 1998 Mar-Apr;7(2):90–97. doi: 10.1159/000014534. [DOI] [PubMed] [Google Scholar]
  7. Druey K. M., Kehrl J. H. Inhibition of regulator of G protein signaling function by two mutant RGS4 proteins. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12851–12856. doi: 10.1073/pnas.94.24.12851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dulin N. O., Sorokin A., Reed E., Elliott S., Kehrl J. H., Dunn M. J. RGS3 inhibits G protein-mediated signaling via translocation to the membrane and binding to Galpha11. Mol Cell Biol. 1999 Jan;19(1):714–723. doi: 10.1128/mcb.19.1.714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gale N. W., Yancopoulos G. D. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev. 1999 May 1;13(9):1055–1066. doi: 10.1101/gad.13.9.1055. [DOI] [PubMed] [Google Scholar]
  10. Gold S. J., Ni Y. G., Dohlman H. G., Nestler E. J. Regulators of G-protein signaling (RGS) proteins: region-specific expression of nine subtypes in rat brain. J Neurosci. 1997 Oct 15;17(20):8024–8037. doi: 10.1523/JNEUROSCI.17-20-08024.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grant S. L., Lassègue B., Griendling K. K., Ushio-Fukai M., Lyons P. R., Alexander R. W. Specific regulation of RGS2 messenger RNA by angiotensin II in cultured vascular smooth muscle cells. Mol Pharmacol. 2000 Mar;57(3):460–467. doi: 10.1124/mol.57.3.460. [DOI] [PubMed] [Google Scholar]
  12. Hattori Y., Matsuda N., Sato A., Watanuki S., Tomioka H., Kawasaki H., Kanno M. Predominant contribution of the G protein-mediated mechanism to NaF-induced vascular contractions in diabetic rats: association with an increased level of G(qalpha) expression. J Pharmacol Exp Ther. 2000 Feb;292(2):761–768. [PubMed] [Google Scholar]
  13. Hepler J. R. Emerging roles for RGS proteins in cell signalling. Trends Pharmacol Sci. 1999 Sep;20(9):376–382. doi: 10.1016/s0165-6147(99)01369-3. [DOI] [PubMed] [Google Scholar]
  14. Hla T. Sphingosine 1-phosphate receptors. Prostaglandins Other Lipid Mediat. 2001 Apr;64(1-4):135–142. doi: 10.1016/s0090-6980(01)00109-5. [DOI] [PubMed] [Google Scholar]
  15. Hobson J. P., Rosenfeldt H. M., Barak L. S., Olivera A., Poulton S., Caron M. G., Milstien S., Spiegel S. Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science. 2001 Mar 2;291(5509):1800–1803. doi: 10.1126/science.1057559. [DOI] [PubMed] [Google Scholar]
  16. Ishii I., Friedman B., Ye X., Kawamura S., McGiffert C., Contos J. J., Kingsbury M. A., Zhang G., Brown J. H., Chun J. Selective loss of sphingosine 1-phosphate signaling with no obvious phenotypic abnormality in mice lacking its G protein-coupled receptor, LP(B3)/EDG-3. J Biol Chem. 2001 Jul 6;276(36):33697–33704. doi: 10.1074/jbc.M104441200. [DOI] [PubMed] [Google Scholar]
  17. Kardestuncer T., Wu H., Lim A. L., Neer E. J. Cardiac myocytes express mRNA for ten RGS proteins: changes in RGS mRNA expression in ventricular myocytes and cultured atria. FEBS Lett. 1998 Nov 6;438(3):285–288. doi: 10.1016/s0014-5793(98)01319-2. [DOI] [PubMed] [Google Scholar]
  18. Kehrl John H., Srikumar Deepa, Harrison Kathleen, Wilson Gaye L., Shi Chong-Shan. Additional 5' exons in the RGS3 locus generate multiple mRNA transcripts, one of which accounts for the origin of human PDZ-RGS3. Genomics. 2002 Jun;79(6):860–868. doi: 10.1006/geno.2002.6773. [DOI] [PubMed] [Google Scholar]
  19. Kupperman E., An S., Osborne N., Waldron S., Stainier D. Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature. 2000 Jul 13;406(6792):192–195. doi: 10.1038/35018092. [DOI] [PubMed] [Google Scholar]
  20. Lee M. J., Thangada S., Claffey K. P., Ancellin N., Liu C. H., Kluk M., Volpi M., Sha'afi R. I., Hla T. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell. 1999 Oct 29;99(3):301–312. doi: 10.1016/s0092-8674(00)81661-x. [DOI] [PubMed] [Google Scholar]
  21. Liu C. H., Thangada S., Lee M. J., Van Brocklyn J. R., Spiegel S., Hla T. Ligand-induced trafficking of the sphingosine-1-phosphate receptor EDG-1. Mol Biol Cell. 1999 Apr;10(4):1179–1190. doi: 10.1091/mbc.10.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Liu Y., Wada R., Yamashita T., Mi Y., Deng C. X., Hobson J. P., Rosenfeldt H. M., Nava V. E., Chae S. S., Lee M. J. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest. 2000 Oct;106(8):951–961. doi: 10.1172/JCI10905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lu Q., Sun E. E., Klein R. S., Flanagan J. G. Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell. 2001 Apr 6;105(1):69–79. doi: 10.1016/s0092-8674(01)00297-5. [DOI] [PubMed] [Google Scholar]
  24. Mittmann Clemens, Chung Chin Hee, Höppner Grit, Michalek Christina, Nose Monika, Schüler Christian, Schuh Antje, Eschenhagen Thomas, Weil Joachim, Pieske Burkert. Expression of ten RGS proteins in human myocardium: functional characterization of an upregulation of RGS4 in heart failure. Cardiovasc Res. 2002 Sep;55(4):778–786. doi: 10.1016/s0008-6363(02)00459-5. [DOI] [PubMed] [Google Scholar]
  25. Moratz C., Kang V. H., Druey K. M., Shi C. S., Scheschonka A., Murphy P. M., Kozasa T., Kehrl J. H. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J Immunol. 2000 Feb 15;164(4):1829–1838. doi: 10.4049/jimmunol.164.4.1829. [DOI] [PubMed] [Google Scholar]
  26. Norlin E. M., Berghard A. Spatially restricted expression of regulators of G-protein signaling in primary olfactory neurons. Mol Cell Neurosci. 2001 May;17(5):872–882. doi: 10.1006/mcne.2001.0976. [DOI] [PubMed] [Google Scholar]
  27. Park I. K., Klug C. A., Li K., Jerabek L., Li L., Nanamori M., Neubig R. R., Hood L., Weissman I. L., Clarke M. F. Molecular cloning and characterization of a novel regulator of G-protein signaling from mouse hematopoietic stem cells. J Biol Chem. 2001 Jan 12;276(2):915–923. doi: 10.1074/jbc.M005947200. [DOI] [PubMed] [Google Scholar]
  28. Robert P., Tsui P., Laville M. P., Livi G. P., Sarau H. M., Bril A., Berrebi-Bertrand I. EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes. J Mol Cell Cardiol. 2001 Sep;33(9):1589–1606. doi: 10.1006/jmcc.2001.1433. [DOI] [PubMed] [Google Scholar]
  29. Rogers J. H., Tamirisa P., Kovacs A., Weinheimer C., Courtois M., Blumer K. J., Kelly D. P., Muslin A. J. RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J Clin Invest. 1999 Sep;104(5):567–576. doi: 10.1172/JCI6713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ryu Yasuji, Takuwa Noriko, Sugimoto Naotoshi, Sakurada Sotaro, Usui Soichiro, Okamoto Hiroyuki, Matsui Osamu, Takuwa Yoh. Sphingosine-1-phosphate, a platelet-derived lysophospholipid mediator, negatively regulates cellular Rac activity and cell migration in vascular smooth muscle cells. Circ Res. 2002 Feb 22;90(3):325–332. doi: 10.1161/hh0302.104455. [DOI] [PubMed] [Google Scholar]
  31. Sato T. N. A new role of lipid receptors in vascular and cardiac morphogenesis. J Clin Invest. 2000 Oct;106(8):939–940. doi: 10.1172/JCI11304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scheschonka A., Dessauer C. W., Sinnarajah S., Chidiac P., Shi C. S., Kehrl J. H. RGS3 is a GTPase-activating protein for g(ialpha) and g(qalpha) and a potent inhibitor of signaling by GTPase-deficient forms of g(qalpha) and g(11alpha). Mol Pharmacol. 2000 Oct;58(4):719–728. doi: 10.1124/mol.58.4.719. [DOI] [PubMed] [Google Scholar]
  33. Schiff M. L., Siderovski D. P., Jordan J. D., Brothers G., Snow B., De Vries L., Ortiz D. F., Diversé-Pierluissi M. Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature. 2000 Dec 7;408(6813):723–727. doi: 10.1038/35047093. [DOI] [PubMed] [Google Scholar]
  34. Sidawy A. N., Mitchell M. E., Neville R. F. Peptide growth factors and signal transduction. Semin Vasc Surg. 1998 Sep;11(3):149–155. [PubMed] [Google Scholar]
  35. Siehler S., Wang Y., Fan X., Windh R. T., Manning D. R. Sphingosine 1-phosphate activates nuclear factor-kappa B through Edg receptors. Activation through Edg-3 and Edg-5, but not Edg-1, in human embryonic kidney 293 cells. J Biol Chem. 2001 Oct 22;276(52):48733–48739. doi: 10.1074/jbc.M011072200. [DOI] [PubMed] [Google Scholar]
  36. Sinnarajah S., Dessauer C. W., Srikumar D., Chen J., Yuen J., Yilma S., Dennis J. C., Morrison E. E., Vodyanoy V., Kehrl J. H. RGS2 regulates signal transduction in olfactory neurons by attenuating activation of adenylyl cyclase III. Nature. 2001 Feb 22;409(6823):1051–1055. doi: 10.1038/35059104. [DOI] [PubMed] [Google Scholar]
  37. Sunahara R. K., Dessauer C. W., Gilman A. G. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–480. doi: 10.1146/annurev.pa.36.040196.002333. [DOI] [PubMed] [Google Scholar]
  38. Tamirisa P., Blumer K. J., Muslin A. J. RGS4 inhibits G-protein signaling in cardiomyocytes. Circulation. 1999 Jan 26;99(3):441–447. doi: 10.1161/01.cir.99.3.441. [DOI] [PubMed] [Google Scholar]
  39. Wang Qin, Liu Min, Mullah Bashar, Siderovski David P., Neubig Richard R. Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Biol Chem. 2002 May 2;277(28):24949–24958. doi: 10.1074/jbc.M203802200. [DOI] [PubMed] [Google Scholar]
  40. Waters Catherine, Sambi Balwinder, Kong Kok-Choi, Thompson Dawn, Pitson Stuart M., Pyne Susan, Pyne Nigel J. Sphingosine 1-phosphate and platelet-derived growth factor (PDGF) act via PDGF beta receptor-sphingosine 1-phosphate receptor complexes in airway smooth muscle cells. J Biol Chem. 2002 Dec 11;278(8):6282–6290. doi: 10.1074/jbc.M208560200. [DOI] [PubMed] [Google Scholar]
  41. Wong S. T., Baker L. P., Trinh K., Hetman M., Suzuki L. A., Storm D. R., Bornfeldt K. E. Adenylyl cyclase 3 mediates prostaglandin E(2)-induced growth inhibition in arterial smooth muscle cells. J Biol Chem. 2001 Jun 29;276(36):34206–34212. doi: 10.1074/jbc.M103923200. [DOI] [PubMed] [Google Scholar]
  42. Xu X., Zeng W., Popov S., Berman D. M., Davignon I., Yu K., Yowe D., Offermanns S., Muallem S., Wilkie T. M. RGS proteins determine signaling specificity of Gq-coupled receptors. J Biol Chem. 1999 Feb 5;274(6):3549–3556. doi: 10.1074/jbc.274.6.3549. [DOI] [PubMed] [Google Scholar]
  43. Yamaki F., Kaga M., Horinouchi T., Tanaka H., Koike K., Shigenobu K., Toro L., Tanaka Y. MaxiK channel-mediated relaxation of guinea-pig aorta following stimulation of IP receptor with beraprost via cyclic AMP-dependent and -independent mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 2001 Dec;364(6):538–550. doi: 10.1007/s002100100485. [DOI] [PubMed] [Google Scholar]
  44. Zhang S., Watson N., Zahner J., Rottman J. N., Blumer K. J., Muslin A. J. RGS3 and RGS4 are GTPase activating proteins in the heart. J Mol Cell Cardiol. 1998 Feb;30(2):269–276. doi: 10.1006/jmcc.1997.0591. [DOI] [PubMed] [Google Scholar]
  45. Zhou J., Moroi K., Nishiyama M., Usui H., Seki N., Ishida J., Fukamizu A., Kimura S. Characterization of RGS5 in regulation of G protein-coupled receptor signaling. Life Sci. 2001 Feb 16;68(13):1457–1469. doi: 10.1016/s0024-3205(01)00939-0. [DOI] [PubMed] [Google Scholar]
  46. Zmijewski J. W., Song L., Harkins L., Cobbs C. S., Jope R. S. Second messengers regulate RGS2 expression which is targeted to the nucleus. Biochim Biophys Acta. 2001 Dec 19;1541(3):201–211. doi: 10.1016/s0167-4889(01)00144-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES