Abstract
5 S rRNA is an integral component of the large ribosomal subunit in all known organisms. Despite many years of intensive study, the function of 5 S rRNA in the ribosome remains unknown. Advances in the analysis of ribosome structure that have revealed the crystal structures of large ribosomal subunits and of the complete ribosome from various organisms put the results of studies on 5 S rRNA in a new perspective. This paper summarizes recently published data on the structure and function of 5 S rRNA and its interactions in complexes with proteins, within and outside the ribosome.
Full Text
The Full Text of this article is available as a PDF (462.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammons D., Rampersad J., Fox G. E. 5S rRNA gene deletions cause an unexpectedly high fitness loss in Escherichia coli. Nucleic Acids Res. 1999 Jan 15;27(2):637–642. doi: 10.1093/nar/27.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
- Barciszewska M. Z., Rapp G., Betzel C., Erdmann V. A., Barciszewski J. Structural changes of tRNA and 5S rRNA induced with magnesium and visualized with synchrotron mediated hydroxyl radical cleavage. Mol Biol Rep. 2001;28(2):103–110. doi: 10.1023/a:1017951120531. [DOI] [PubMed] [Google Scholar]
- Betzel C., Lorenz S., Fürste J. P., Bald R., Zhang M., Schneider T. R., Wilson K. S., Erdmann V. A. Crystal structure of domain A of Thermus flavus 5S rRNA and the contribution of water molecules to its structure. FEBS Lett. 1994 Sep 5;351(2):159–164. doi: 10.1016/0014-5793(94)00834-5. [DOI] [PubMed] [Google Scholar]
- Bloemink M. J., Moore P. B. Phosphorylation of ribosomal protein L18 is required for its folding and binding to 5S rRNA. Biochemistry. 1999 Oct 5;38(40):13385–13390. doi: 10.1021/bi9914816. [DOI] [PubMed] [Google Scholar]
- Brow D. A., Geiduschek E. P. Modulation of yeast 5 S rRNA synthesis in vitro by ribosomal protein YL3. A possible regulatory loop. J Biol Chem. 1987 Oct 15;262(29):13953–13958. [PubMed] [Google Scholar]
- Böttger E. C., Springer B., Prammananan T., Kidan Y., Sander P. Structural basis for selectivity and toxicity of ribosomal antibiotics. EMBO Rep. 2001 Apr;2(4):318–323. doi: 10.1093/embo-reports/kve062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Christensen A., Mathiesen M., Peattie D., Garrett R. A. Alternative conformers of 5S ribosomal RNA and their biological relevance. Biochemistry. 1985 Apr 23;24(9):2284–2291. doi: 10.1021/bi00330a024. [DOI] [PubMed] [Google Scholar]
- Claussen M., Rudt F., Pieler T. Functional modules in ribosomal protein L5 for ribonucleoprotein complex formation and nucleocytoplasmic transport. J Biol Chem. 1999 Nov 26;274(48):33951–33958. doi: 10.1074/jbc.274.48.33951. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Munishkin A., Chan Y. L., Ren Z., Wool I. G., Steitz T. A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13436–13441. doi: 10.1073/pnas.95.23.13436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Correll C. C., Wool I. G., Munishkin A. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. J Mol Biol. 1999 Sep 17;292(2):275–287. doi: 10.1006/jmbi.1999.3072. [DOI] [PubMed] [Google Scholar]
- Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
- DiNitto J. P., Huber P. W. A role for aromatic amino acids in the binding of Xenopus ribosomal protein L5 to 5S rRNA. Biochemistry. 2001 Oct 23;40(42):12645–12653. doi: 10.1021/bi011439m. [DOI] [PubMed] [Google Scholar]
- Dokudovskaya S., Dontsova O., Shpanchenko O., Bogdanov A., Brimacombe R. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA. 1996 Feb;2(2):146–152. [PMC free article] [PubMed] [Google Scholar]
- Entelis N. S., Kolesnikova O. A., Dogan S., Martin R. P., Tarassov I. A. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem. 2001 Sep 10;276(49):45642–45653. doi: 10.1074/jbc.M103906200. [DOI] [PubMed] [Google Scholar]
- Fedorov R., Meshcheryakov V., Gongadze G., Fomenkova N., Nevskaya N., Selmer M., Laurberg M., Kristensen O., Al-Karadaghi S., Liljas A. Structure of ribosomal protein TL5 complexed with RNA provides new insights into the CTC family of stress proteins. Acta Crystallogr D Biol Crystallogr. 2001 Jun 21;57(Pt 7):968–976. doi: 10.1107/s0907444901006291. [DOI] [PubMed] [Google Scholar]
- Friesen W. J., Darby M. K. Phage display of RNA binding zinc fingers from transcription factor IIIA. J Biol Chem. 1997 Apr 25;272(17):10994–10997. doi: 10.1074/jbc.272.17.10994. [DOI] [PubMed] [Google Scholar]
- Funari S. S., Rapp G., Perbandt M., Dierks K., Vallazza M., Betzel C., Erdmann V. A., Svergun D. I. Structure of free Thermus flavus 5 S rRNA at 1.3 nm resolution from synchrotron X-ray solution scattering. J Biol Chem. 2000 Oct 6;275(40):31283–31288. doi: 10.1074/jbc.M004974200. [DOI] [PubMed] [Google Scholar]
- Furumoto H., Taguchi A., Itoh T., Morinaga T., Itoh T. 5S rRNA binding proteins from the hyperthermophilic archaeon, Pyrococcus furiosus. FEBS Lett. 2000 Dec 15;486(3):195–199. doi: 10.1016/s0014-5793(00)02293-6. [DOI] [PubMed] [Google Scholar]
- Gautheret D., Konings D., Gutell R. R. G.U base pairing motifs in ribosomal RNA. RNA. 1995 Oct;1(8):807–814. [PMC free article] [PubMed] [Google Scholar]
- Giel-Pietraszuk Małgorzata, Barciszewska Mirosława Z. Additivity of interactions of zinc finger motifs in specific recognition of RNA. J Biochem. 2002 Apr;131(4):571–578. doi: 10.1093/oxfordjournals.jbchem.a003136. [DOI] [PubMed] [Google Scholar]
- Gray M. W., Burger G., Lang B. F. Mitochondrial evolution. Science. 1999 Mar 5;283(5407):1476–1481. doi: 10.1126/science.283.5407.1476. [DOI] [PubMed] [Google Scholar]
- Guerra B., Issinger O. G. p53 and the ribosomal protein L5 participate in high molecular mass complex formation with protein kinase CK2 in murine teratocarcinoma cell line F9 after serum stimulation and cisplatin treatment. FEBS Lett. 1998 Aug 28;434(1-2):115–120. doi: 10.1016/s0014-5793(98)00962-4. [DOI] [PubMed] [Google Scholar]
- Hamilton T. B., Turner J., Barilla K., Romaniuk P. J. Contribution of individual amino acids to the nucleic acid binding activities of the Xenopus zinc finger proteins TFIIIIA and p43. Biochemistry. 2001 May 22;40(20):6093–6101. doi: 10.1021/bi0025215. [DOI] [PubMed] [Google Scholar]
- Hansen Jeffrey L., Schmeing T. Martin, Moore Peter B., Steitz Thomas A. Structural insights into peptide bond formation. Proc Natl Acad Sci U S A. 2002 Aug 16;99(18):11670–11675. doi: 10.1073/pnas.172404099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harms J., Schluenzen F., Zarivach R., Bashan A., Gat S., Agmon I., Bartels H., Franceschi F., Yonath A. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell. 2001 Nov 30;107(5):679–688. doi: 10.1016/s0092-8674(01)00546-3. [DOI] [PubMed] [Google Scholar]
- Hirano K., Ito M., Hartshorne D. J. Interaction of the ribosomal protein, L5, with protein phosphatase type 1. J Biol Chem. 1995 Aug 25;270(34):19786–19790. doi: 10.1074/jbc.270.34.19786. [DOI] [PubMed] [Google Scholar]
- Holmberg L., Nygård O. Release of ribosome-bound 5S rRNA upon cleavage of the phosphodiester bond between nucleotides A54 and A55 in 5S rRNA. Biol Chem. 2000 Nov;381(11):1041–1046. doi: 10.1515/BC.2000.128. [DOI] [PubMed] [Google Scholar]
- Huber P. W., Rife J. P., Moore P. B. The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge. J Mol Biol. 2001 Sep 28;312(4):823–832. doi: 10.1006/jmbi.2001.4966. [DOI] [PubMed] [Google Scholar]
- Iwasaki Kenta, Kikukawa Shingo, Kawamura Shunsuke, Kouzuma Yoshiaki, Tanaka Isao, Kimura Makoto. On the interaction of ribosomal protein L5 with 5S rRNA. Biosci Biotechnol Biochem. 2002 Jan;66(1):103–109. doi: 10.1271/bbb.66.103. [DOI] [PubMed] [Google Scholar]
- Joho K. E., Darby M. K., Crawford E. T., Brown D. D. A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA in Xenopus. Cell. 1990 Apr 20;61(2):293–300. doi: 10.1016/0092-8674(90)90809-s. [DOI] [PubMed] [Google Scholar]
- Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol. 1996 Dec 20;264(5):968–980. doi: 10.1006/jmbi.1996.0690. [DOI] [PubMed] [Google Scholar]
- Khaitovich P., Mankin A. S. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA. J Mol Biol. 1999 Sep 3;291(5):1025–1034. doi: 10.1006/jmbi.1999.3030. [DOI] [PubMed] [Google Scholar]
- Khaitovich P., Mankin A. S., Green R., Lancaster L., Noller H. F. Characterization of functionally active subribosomal particles from Thermus aquaticus. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):85–90. doi: 10.1073/pnas.96.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim J. M., Cha J. Y., Marshak D. R., Bae Y. S. Interaction of the beta subunit of casein kinase II with the ribosomal protein L5. Biochem Biophys Res Commun. 1996 Sep 4;226(1):180–186. doi: 10.1006/bbrc.1996.1330. [DOI] [PubMed] [Google Scholar]
- Ko J., Lee Y., Park I., Cho B. Identification of a structural motif of 23S rRNA interacting with 5S rRNA. FEBS Lett. 2001 Nov 23;508(3):300–304. doi: 10.1016/s0014-5793(01)03068-x. [DOI] [PubMed] [Google Scholar]
- Leontis N. B., Ghosh P., Moore P. B. Effect of magnesium ion on the structure of the 5S RNA from Escherichia coli. An imino proton magnetic resonance study of the helix I, IV, and V regions of the molecule. Biochemistry. 1986 Nov 18;25(23):7386–7392. doi: 10.1021/bi00371a021. [DOI] [PubMed] [Google Scholar]
- Leontis N. B., Westhof E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J Mol Biol. 1998 Oct 30;283(3):571–583. doi: 10.1006/jmbi.1998.2106. [DOI] [PubMed] [Google Scholar]
- Leontis N. B., Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 1998 Sep;4(9):1134–1153. doi: 10.1017/s1355838298980566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin E., Lin S. W., Lin A. The participation of 5S rRNA in the co-translational formation of a eukaryotic 5S ribonucleoprotein complex. Nucleic Acids Res. 2001 Jun 15;29(12):2510–2516. doi: 10.1093/nar/29.12.2510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lorenz S., Perbandt M., Lippmann C., Moore K., DeLucas L. J., Betzel C., Erdmann V. A. Crystallization of engineered Thermus flavus 5S rRNA under earth and microgravity conditions. Acta Crystallogr D Biol Crystallogr. 2000 Apr;56(Pt 4):498–500. doi: 10.1107/s0907444900001736. [DOI] [PubMed] [Google Scholar]
- Lu M., Steitz T. A. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-A resolution. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2023–2028. doi: 10.1073/pnas.97.5.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McBryant S. J., Veldhoen N., Gedulin B., Leresche A., Foster M. P., Wright P. E., Romaniuk P. J., Gottesfeld J. M. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5 S ribosomal RNA. J Mol Biol. 1995 Apr 21;248(1):44–57. doi: 10.1006/jmbi.1995.0201. [DOI] [PubMed] [Google Scholar]
- Meskauskas A., Dinman J. D. Ribosomal protein L5 helps anchor peptidyl-tRNA to the P-site in Saccharomyces cerevisiae. RNA. 2001 Aug;7(8):1084–1096. doi: 10.1017/S1355838201001480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore Peter B., Steitz Thomas A. The involvement of RNA in ribosome function. Nature. 2002 Jul 11;418(6894):229–235. doi: 10.1038/418229a. [DOI] [PubMed] [Google Scholar]
- Murdoch K. J., Allison L. A. A role for ribosomal protein L5 in the nuclear import of 5S rRNA in Xenopus oocytes. Exp Cell Res. 1996 Sep 15;227(2):332–343. doi: 10.1006/excr.1996.0282. [DOI] [PubMed] [Google Scholar]
- Nakashima T., Yao M., Kawamura S., Iwasaki K., Kimura M., Tanaka I. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding. RNA. 2001 May;7(5):692–701. doi: 10.1017/s1355838201002345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neely L. S., Lee B. M., Xu J., Wright P. E., Gottesfeld J. M. Identification of a minimal domain of 5 S ribosomal RNA sufficient for high affinity interactions with the RNA-specific zinc fingers of transcription factor IIIA. J Mol Biol. 1999 Aug 20;291(3):549–560. doi: 10.1006/jmbi.1999.2985. [DOI] [PubMed] [Google Scholar]
- Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
- Nissen P., Ippolito J. A., Ban N., Moore P. B., Steitz T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci U S A. 2001 Apr 10;98(9):4899–4903. doi: 10.1073/pnas.081082398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nolte R. T., Conlin R. M., Harrison S. C., Brown R. S. Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2938–2943. doi: 10.1073/pnas.95.6.2938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogata K., Kurahashi A., Kenmochi N., Terao K. Role of 5SrRNA as a positive effector of some aminoacyl-tRNA synthetases in macromolecular complexes, with specific reference to methionyl-tRNA synthetase. J Biochem. 1991 Dec;110(6):1037–1044. doi: 10.1093/oxfordjournals.jbchem.a123674. [DOI] [PubMed] [Google Scholar]
- Ogata K., Kurahashi A., Nishiyama C., Terao K. Presence of role of the 5SrRNA-L5 protein complex (5SRNP) in the threonyl- and histidyl-tRNA synthetase complex in rat liver cytosol. Biochim Biophys Acta. 1994 Aug 2;1218(3):388–400. doi: 10.1016/0167-4781(94)90192-9. [DOI] [PubMed] [Google Scholar]
- Ogata K., Kurahashi A., Tanaka S., Kazukiro H., Terao K., Ohsue H. Occurrence of 5SrRNA in high molecular weight complexes of aminoacyl-tRNA synthetases in a rat liver supernatant. J Biochem. 1991 Dec;110(6):1030–1036. doi: 10.1093/oxfordjournals.jbchem.a123673. [DOI] [PubMed] [Google Scholar]
- Ogata K., Ohno R., Morioka S., Terao K. Further study on association of 5SrRNA-L5 protein complex and methionyl-tRNA to methionyl-tRNA synthetase in the macromolecular aminoacyl-tRNA synthetase complex. J Biochem. 1996 Nov;120(5):869–880. doi: 10.1093/oxfordjournals.jbchem.a021500. [DOI] [PubMed] [Google Scholar]
- Okada S., Okada T., Aimi T., Morinaga T., Itoh T. HSP70 and ribosomal protein L2: novel 5S rRNA binding proteins in Escherichia coli. FEBS Lett. 2000 Nov 24;485(2-3):153–156. doi: 10.1016/s0014-5793(00)02184-0. [DOI] [PubMed] [Google Scholar]
- Osswald M., Brimacombe R. The environment of 5S rRNA in the ribosome: cross-links to 23S rRNA from sites within helices II and III of the 5S molecule. Nucleic Acids Res. 1999 Jun 1;27(11):2283–2290. doi: 10.1093/nar/27.11.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park J. W., Bae Y. S. Phosphorylation of ribosomal protein L5 by protein kinase CKII decreases its 5S rRNA binding activity. Biochem Biophys Res Commun. 1999 Sep 24;263(2):475–481. doi: 10.1006/bbrc.1999.1345. [DOI] [PubMed] [Google Scholar]
- Perbandt M., Nolte A., Lorenz S., Bald R., Betzel C., Erdmann V. A. Crystal structure of domain E of Thermus flavus 5S rRNA: a helical RNA structure including a hairpin loop. FEBS Lett. 1998 Jun 12;429(2):211–215. doi: 10.1016/s0014-5793(98)00436-0. [DOI] [PubMed] [Google Scholar]
- Perbandt M., Vallazza M., Lippmann C., Betzel C., Erdmann V. A. Structure of an RNA duplex with an unusual G.C pair in wobble-like conformation at 1.6 A resolution. Acta Crystallogr D Biol Crystallogr. 2001 Feb;57(Pt 2):219–224. doi: 10.1107/s0907444900017042. [DOI] [PubMed] [Google Scholar]
- Pioletti M., Schlünzen F., Harms J., Zarivach R., Glühmann M., Avila H., Bashan A., Bartels H., Auerbach T., Jacobi C. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 2001 Apr 17;20(8):1829–1839. doi: 10.1093/emboj/20.8.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pittman R. H., Andrews M. T., Setzer D. R. A feedback loop coupling 5 S rRNA synthesis to accumulation of a ribosomal protein. J Biol Chem. 1999 Nov 19;274(47):33198–33201. doi: 10.1074/jbc.274.47.33198. [DOI] [PubMed] [Google Scholar]
- Pitula Joseph, Ruyechan William T., Williams Noreen. Two novel RNA binding proteins from Trypanosoma brucei are associated with 5S rRNA. Biochem Biophys Res Commun. 2002 Jan 11;290(1):569–576. doi: 10.1006/bbrc.2001.6226. [DOI] [PubMed] [Google Scholar]
- Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
- Romaniuk P. J., de Stevenson I. L., Ehresmann C., Romby P., Ehresmann B. A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs of Xenopus laevis. Nucleic Acids Res. 1988 Mar 25;16(5):2295–2312. doi: 10.1093/nar/16.5.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosorius O., Fries B., Stauber R. H., Hirschmann N., Bevec D., Hauber J. Human ribosomal protein L5 contains defined nuclear localization and export signals. J Biol Chem. 2000 Apr 21;275(16):12061–12068. doi: 10.1074/jbc.275.16.12061. [DOI] [PubMed] [Google Scholar]
- Rudt F., Pieler T. Cytosolic import factor- and Ran-independent nuclear transport of ribosomal protein L5. Eur J Cell Biol. 2001 Nov;80(11):661–668. doi: 10.1078/0171-9335-00212. [DOI] [PubMed] [Google Scholar]
- Schlünzen F., Zarivach R., Harms J., Bashan A., Tocilj A., Albrecht R., Yonath A., Franceschi F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature. 2001 Oct 25;413(6858):814–821. doi: 10.1038/35101544. [DOI] [PubMed] [Google Scholar]
- Scripture J. B., Huber P. W. Analysis of the binding of Xenopus ribosomal protein L5 to oocyte 5 S rRNA. The major determinants of recognition are located in helix III-loop C. J Biol Chem. 1995 Nov 10;270(45):27358–27365. doi: 10.1074/jbc.270.45.27358. [DOI] [PubMed] [Google Scholar]
- Searles M. A., Lu D., Klug A. The role of the central zinc fingers of transcription factor IIIA in binding to 5 S RNA. J Mol Biol. 2000 Aug 4;301(1):47–60. doi: 10.1006/jmbi.2000.3946. [DOI] [PubMed] [Google Scholar]
- Sergiev P. V., Bogdanov A. A., Dahlberg A. E., Dontsova O. Mutations at position A960 of E. coli 23 S ribosomal RNA influence the structure of 5 S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA. J Mol Biol. 2000 Jun 2;299(2):379–389. doi: 10.1006/jmbi.2000.3739. [DOI] [PubMed] [Google Scholar]
- Sergiev P., Dokudovskaya S., Romanova E., Topin A., Bogdanov A., Brimacombe R., Dontsova O. The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA. Nucleic Acids Res. 1998 Jun 1;26(11):2519–2525. doi: 10.1093/nar/26.11.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setzer D. R., Menezes S. R., Del Rio S., Hung V. S., Subramanyan G. Functional interactions between the zinc fingers of Xenopus transcription factor IIIA during 5S rRNA binding. RNA. 1996 Dec;2(12):1254–1269. [PMC free article] [PubMed] [Google Scholar]
- Spahn C. M., Beckmann R., Eswar N., Penczek P. A., Sali A., Blobel G., Frank J. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Cell. 2001 Nov 2;107(3):373–386. doi: 10.1016/s0092-8674(01)00539-6. [DOI] [PubMed] [Google Scholar]
- Stoldt M., Wöhnert J., Görlach M., Brown L. R. The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. EMBO J. 1998 Nov 2;17(21):6377–6384. doi: 10.1093/emboj/17.21.6377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoldt M., Wöhnert J., Ohlenschläger O., Görlach M., Brown L. R. The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition. EMBO J. 1999 Nov 15;18(22):6508–6521. doi: 10.1093/emboj/18.22.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
- Szymanski Maciej, Barciszewska Miroslawa Z., Erdmann Volker A., Barciszewski Jan. 5S Ribosomal RNA Database. Nucleic Acids Res. 2002 Jan 1;30(1):176–178. doi: 10.1093/nar/30.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szymański M., Barciszewska M. Z., Erdmann V. A., Barciszewski J. An analysis of G-U base pair occurrence in eukaryotic 5S rRNAs. Mol Biol Evol. 2000 Aug;17(8):1194–1198. doi: 10.1093/oxfordjournals.molbev.a026402. [DOI] [PubMed] [Google Scholar]
- Theunissen O., Rudt F., Guddat U., Mentzel H., Pieler T. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell. 1992 Nov 13;71(4):679–690. doi: 10.1016/0092-8674(92)90601-8. [DOI] [PubMed] [Google Scholar]
- Theunissen O., Rudt F., Pieler T. Structural determinants in 5S RNA and TFIIIA for 7S RNP formation. Eur J Biochem. 1998 Dec 1;258(2):758–767. doi: 10.1046/j.1432-1327.1998.2580758.x. [DOI] [PubMed] [Google Scholar]
- Van den Eynde H., Mazabraud A., Denis H. Biochemical research on oogenesis. RNA accumulation in the oocytes of the newt Pleurodeles waltl. Development. 1989 May;106(1):11–16. doi: 10.1242/dev.106.1.11. [DOI] [PubMed] [Google Scholar]
- Viel A., le Maire M., Philippe H., Morales J., Mazabraud A., Denis H. Structural and functional properties of thesaurin a (42Sp50), the major protein of the 42 S particles present in Xenopus laevis previtellogenic oocytes. J Biol Chem. 1991 Jun 5;266(16):10392–10399. [PubMed] [Google Scholar]
- Westhof E., Romby P., Romaniuk P. J., Ebel J. P., Ehresmann C., Ehresmann B. Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. J Mol Biol. 1989 May 20;207(2):417–431. doi: 10.1016/0022-2836(89)90264-7. [DOI] [PubMed] [Google Scholar]
- Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]
- Woestenenk Esmeralda A., Gongadze George M., Shcherbakov Dmitry V., Rak Alexey V., Garber Maria B., Härd Torleif, Berglund Helena. The solution structure of ribosomal protein L18 from Thermus thermophilus reveals a conserved RNA-binding fold. Biochem J. 2002 May 1;363(Pt 3):553–561. doi: 10.1042/0264-6021:3630553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y., Sundaralingam M. Two crystal forms of helix II of Xenopus laevis 5S rRNA with a cytosine bulge. RNA. 2000 Sep;6(9):1316–1324. doi: 10.1017/s135583820000090x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yusupov M. M., Yusupova G. Z., Baucom A., Lieberman K., Earnest T. N., Cate J. H., Noller H. F. Crystal structure of the ribosome at 5.5 A resolution. Science. 2001 Mar 29;292(5518):883–896. doi: 10.1126/science.1060089. [DOI] [PubMed] [Google Scholar]
- Zang W. Q., Romaniuk P. J. Characterization of the 5 S RNA binding activity of Xenopus zinc finger protein p43. J Mol Biol. 1995 Feb 3;245(5):549–558. doi: 10.1006/jmbi.1994.0045. [DOI] [PubMed] [Google Scholar]