Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):907–915. doi: 10.1042/BJ20021578

Selective interaction of LAT (linker of activated T cells) with the open-active form of Lck in lipid rafts reveals a new mechanism for the regulation of Lck in T cells.

Panagiotis S Kabouridis 1
PMCID: PMC1223349  PMID: 12570875

Abstract

In T cells, the lipid raft-associated Lck is strongly tyrosine phosphorylated and has reduced enzymic activity in contrast with the detergent-soluble pool, which has substantial activity. Lck tagged at the C-terminus (Lck/V5-His) was efficiently captured by epitope-specific reagents from the detergent-soluble fraction but not from lipid rafts. Binding was restored following urea denaturation, suggesting that Lck/V5-His is in a 'closed' conformation in these domains. In agreement with this hypothesis, the Tyr(505) --> Phe/V5-His and Arg(154) --> Lys/V5-His mutants, which disrupt the SH2-Tyr(505) intramolecular interaction, were efficiently precipitated from lipid rafts. In contrast to Lck, Fyn/V5-His was precipitated equally well from both fractions. In the LAT(linker of activated T cells)-deficient J.CaM2 cells, Tyr(505) phosphorylation of raft-associated Lck was reduced whereas its enzymic activity was elevated. This correlated with decreased levels of raft-localized Csk (C-terminal Src kinase) kinase. Increased tyrosine phosphorylation of Lck was restored in LAT-reconstituted J.CaM2 cells suggesting that LAT negatively regulates Lck activity in lipid rafts. Co-immunoprecipitation experiments from Tyr(505) --> Phe/V5-His-expressing cells revealed that LAT preferentially interacts with the 'open' form of Lck in T cell raft domains. These results demonstrate that, unlike the non-raft pool, Lck in lipid rafts has a 'closed'-inactive structure, and that LAT plays a role in maintaining this conformation, possibly by facilitating critical associations within lipid rafts via its capacity to interact with the 'open' form of the kinase.

Full Text

The Full Text of this article is available as a PDF (264.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acuto O., Cantrell D. T cell activation and the cytoskeleton. Annu Rev Immunol. 2000;18:165–184. doi: 10.1146/annurev.immunol.18.1.165. [DOI] [PubMed] [Google Scholar]
  2. Bi K., Tanaka Y., Coudronniere N., Sugie K., Hong S., van Stipdonk M. J., Altman A. Antigen-induced translocation of PKC-theta to membrane rafts is required for T cell activation. Nat Immunol. 2001 Jun;2(6):556–563. doi: 10.1038/88765. [DOI] [PubMed] [Google Scholar]
  3. Boerth N. J., Sadler J. J., Bauer D. E., Clements J. L., Gheith S. M., Koretzky G. A. Recruitment of SLP-76 to the membrane and glycolipid-enriched membrane microdomains replaces the requirement for linker for activation of T cells in T cell receptor signaling. J Exp Med. 2000 Oct 2;192(7):1047–1058. doi: 10.1084/jem.192.7.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brdicka T., Pavlistová D., Leo A., Bruyns E., Korínek V., Angelisová P., Scherer J., Shevchenko A., Hilgert I., Cerný J. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J Exp Med. 2000 May 1;191(9):1591–1604. doi: 10.1084/jem.191.9.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brdiĉka T., Cerný J., Horejŝ V. T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant membrane microdomains. Biochem Biophys Res Commun. 1998 Jul 20;248(2):356–360. doi: 10.1006/bbrc.1998.8857. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  7. Chan A. C., Iwashima M., Turck C. W., Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell. 1992 Nov 13;71(4):649–662. doi: 10.1016/0092-8674(92)90598-7. [DOI] [PubMed] [Google Scholar]
  8. Chan A. C., Shaw A. S. Regulation of antigen receptor signal transduction by protein tyrosine kinases. Curr Opin Immunol. 1996 Jun;8(3):394–401. doi: 10.1016/s0952-7915(96)80130-0. [DOI] [PubMed] [Google Scholar]
  9. D'Oro U., Sakaguchi K., Appella E., Ashwell J. D. Mutational analysis of Lck in CD45-negative T cells: dominant role of tyrosine 394 phosphorylation in kinase activity. Mol Cell Biol. 1996 Sep;16(9):4996–5003. doi: 10.1128/mcb.16.9.4996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drevot Philippe, Langlet Claire, Guo Xiao-Jun, Bernard Anne-Marie, Colard Odile, Chauvin Jean-Paul, Lasserre Rémi, He Hai-Tao. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 2002 Apr 15;21(8):1899–1908. doi: 10.1093/emboj/21.8.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finco T. S., Kadlecek T., Zhang W., Samelson L. E., Weiss A. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity. 1998 Nov;9(5):617–626. doi: 10.1016/s1074-7613(00)80659-7. [DOI] [PubMed] [Google Scholar]
  12. Harder T., Kuhn M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J Cell Biol. 2000 Oct 16;151(2):199–208. doi: 10.1083/jcb.151.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  14. Horejsí V., Drbal K., Cebecauer M., Cerný J., Brdicka T., Angelisová P., Stockinger H. GPI-microdomains: a role in signalling via immunoreceptors. Immunol Today. 1999 Aug;20(8):356–361. doi: 10.1016/s0167-5699(99)01489-9. [DOI] [PubMed] [Google Scholar]
  15. Janes P. W., Ley S. C., Magee A. I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J Cell Biol. 1999 Oct 18;147(2):447–461. doi: 10.1083/jcb.147.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Janes P. W., Ley S. C., Magee A. I., Kabouridis P. S. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000 Feb;12(1):23–34. doi: 10.1006/smim.2000.0204. [DOI] [PubMed] [Google Scholar]
  17. Kabouridis P. S., Janzen J., Magee A. L., Ley S. C. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol. 2000 Mar;30(3):954–963. doi: 10.1002/1521-4141(200003)30:3<954::AID-IMMU954>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  18. Kabouridis P. S., Magee A. I., Ley S. C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 1997 Aug 15;16(16):4983–4998. doi: 10.1093/emboj/16.16.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kane L. P., Lin J., Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol. 2000 Jun;12(3):242–249. doi: 10.1016/s0952-7915(00)00083-2. [DOI] [PubMed] [Google Scholar]
  20. Kawabuchi M., Satomi Y., Takao T., Shimonishi Y., Nada S., Nagai K., Tarakhovsky A., Okada M. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature. 2000 Apr 27;404(6781):999–1003. doi: 10.1038/35010121. [DOI] [PubMed] [Google Scholar]
  21. Langlet C., Bernard A. M., Drevot P., He H. T. Membrane rafts and signaling by the multichain immune recognition receptors. Curr Opin Immunol. 2000 Jun;12(3):250–255. doi: 10.1016/s0952-7915(00)00084-4. [DOI] [PubMed] [Google Scholar]
  22. Latour S., Veillette A. Proximal protein tyrosine kinases in immunoreceptor signaling. Curr Opin Immunol. 2001 Jun;13(3):299–306. doi: 10.1016/s0952-7915(00)00219-3. [DOI] [PubMed] [Google Scholar]
  23. Lin J., Weiss A., Finco T. S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J Biol Chem. 1999 Oct 8;274(41):28861–28864. doi: 10.1074/jbc.274.41.28861. [DOI] [PubMed] [Google Scholar]
  24. MacAuley A., Cooper J. A. Structural differences between repressed and derepressed forms of p60c-src. Mol Cell Biol. 1989 Jun;9(6):2648–2656. doi: 10.1128/mcb.9.6.2648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moarefi I., LaFevre-Bernt M., Sicheri F., Huse M., Lee C. H., Kuriyan J., Miller W. T. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature. 1997 Feb 13;385(6617):650–653. doi: 10.1038/385650a0. [DOI] [PubMed] [Google Scholar]
  26. Molina T. J., Kishihara K., Siderovski D. P., van Ewijk W., Narendran A., Timms E., Wakeham A., Paige C. J., Hartmann K. U., Veillette A. Profound block in thymocyte development in mice lacking p56lck. Nature. 1992 May 14;357(6374):161–164. doi: 10.1038/357161a0. [DOI] [PubMed] [Google Scholar]
  27. Montixi C., Langlet C., Bernard A. M., Thimonier J., Dubois C., Wurbel M. A., Chauvin J. P., Pierres M., He H. T. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 1998 Sep 15;17(18):5334–5348. doi: 10.1093/emboj/17.18.5334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reynolds A. B., Vila J., Lansing T. J., Potts W. M., Weber M. J., Parsons J. T. Activation of the oncogenic potential of the avian cellular src protein by specific structural alteration of the carboxy terminus. EMBO J. 1987 Aug;6(8):2359–2364. doi: 10.1002/j.1460-2075.1987.tb02512.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reynolds P. J., Hurley T. R., Sefton B. M. Functional analysis of the SH2 and SH3 domains of the lck tyrosine protein kinase. Oncogene. 1992 Oct;7(10):1949–1955. [PubMed] [Google Scholar]
  30. Rodgers W., Rose J. K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J Cell Biol. 1996 Dec;135(6 Pt 1):1515–1523. doi: 10.1083/jcb.135.6.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Samelson Lawrence E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu Rev Immunol. 2001 Oct 4;20:371–394. doi: 10.1146/annurev.immunol.20.092601.111357. [DOI] [PubMed] [Google Scholar]
  32. Sato Ken-ichi, Nagao Tomomi, Kakumoto Miki, Kimoto Miwa, Otsuki Tetsuji, Iwasaki Tetsushi, Tokmakov Alexander A., Owada Koji, Fukami Yasuo. Adaptor protein Shc is an isoform-specific direct activator of the tyrosine kinase c-Src. J Biol Chem. 2002 Jun 4;277(33):29568–29576. doi: 10.1074/jbc.M203179200. [DOI] [PubMed] [Google Scholar]
  33. Schade Andrew E., Levine Alan D. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: a mechanism for regulating the initiation of TCR signal transduction. J Immunol. 2002 Mar 1;168(5):2233–2239. doi: 10.4049/jimmunol.168.5.2233. [DOI] [PubMed] [Google Scholar]
  34. Shenoy-Scaria A. M., Gauen L. K., Kwong J., Shaw A. S., Lublin D. M. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins. Mol Cell Biol. 1993 Oct;13(10):6385–6392. doi: 10.1128/mcb.13.10.6385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sicheri F., Kuriyan J. Structures of Src-family tyrosine kinases. Curr Opin Struct Biol. 1997 Dec;7(6):777–785. doi: 10.1016/s0959-440x(97)80146-7. [DOI] [PubMed] [Google Scholar]
  36. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  37. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  38. Stein P. L., Lee H. M., Rich S., Soriano P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell. 1992 Sep 4;70(5):741–750. doi: 10.1016/0092-8674(92)90308-y. [DOI] [PubMed] [Google Scholar]
  39. Straus D. B., Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell. 1992 Aug 21;70(4):585–593. doi: 10.1016/0092-8674(92)90428-f. [DOI] [PubMed] [Google Scholar]
  40. Thomas S. M., Brugge J. S. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609. doi: 10.1146/annurev.cellbio.13.1.513. [DOI] [PubMed] [Google Scholar]
  41. Torgersen K. M., Vang T., Abrahamsen H., Yaqub S., Horejsí V., Schraven B., Rolstad B., Mustelin T., Taskén K. Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J Biol Chem. 2001 Jun 4;276(31):29313–29318. doi: 10.1074/jbc.C100014200. [DOI] [PubMed] [Google Scholar]
  42. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  43. Xavier R., Seed B. Membrane compartmentation and the response to antigen. Curr Opin Immunol. 1999 Jun;11(3):265–269. doi: 10.1016/s0952-7915(99)80043-0. [DOI] [PubMed] [Google Scholar]
  44. Xu W., Doshi A., Lei M., Eck M. J., Harrison S. C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell. 1999 May;3(5):629–638. doi: 10.1016/s1097-2765(00)80356-1. [DOI] [PubMed] [Google Scholar]
  45. Xu W., Harrison S. C., Eck M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature. 1997 Feb 13;385(6617):595–602. doi: 10.1038/385595a0. [DOI] [PubMed] [Google Scholar]
  46. Yamaguchi H., Hendrickson W. A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature. 1996 Dec 5;384(6608):484–489. doi: 10.1038/384484a0. [DOI] [PubMed] [Google Scholar]
  47. Yamasaki S., Takamatsu M., Iwashima M. The kinase, SH3, and SH2 domains of Lck play critical roles in T-cell activation after ZAP-70 membrane localization. Mol Cell Biol. 1996 Dec;16(12):7151–7160. doi: 10.1128/mcb.16.12.7151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yasuda Koubun, Nagafuku Masakazu, Shima Takaki, Okada Masato, Yagi Takeshi, Yamada Takenao, Minaki Yasuko, Kato Akiko, Tani-Ichi Shizue, Hamaoka Toshiyuki. Cutting edge: Fyn is essential for tyrosine phosphorylation of Csk-binding protein/phosphoprotein associated with glycolipid-enriched microdomains in lipid rafts in resting T cells. J Immunol. 2002 Sep 15;169(6):2813–2817. doi: 10.4049/jimmunol.169.6.2813. [DOI] [PubMed] [Google Scholar]
  49. Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 1998 Jan 9;92(1):83–92. doi: 10.1016/s0092-8674(00)80901-0. [DOI] [PubMed] [Google Scholar]
  50. Zhang W., Trible R. P., Samelson L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity. 1998 Aug;9(2):239–246. doi: 10.1016/s1074-7613(00)80606-8. [DOI] [PubMed] [Google Scholar]
  51. van Leeuwen J. E., Samelson L. E. T cell antigen-receptor signal transduction. Curr Opin Immunol. 1999 Jun;11(3):242–248. doi: 10.1016/s0952-7915(99)80040-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES