Abstract
We have demonstrated that the S'(1) and S'(2) subsites of human tissue kallikrein (hK1) play determinant roles in the recognition and hydrolysis of substrates. The presence of serine at position P'(1) and arginine at P'(2) resulted in the best substrate, Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, which was derived from the kallistatin reactive-centre loop sequence and quencher groups o-aminobenzoic acid (Abz) and N-(2,4-dinitrophenyl)ethylenediamine (EDDnp). Serine and arginine are also the residues at positions P'(1) and P'(2) in human kininogen, from which hK1 releases Lys-bradykinin. Several peptide analogues of Abz-Ala-Ile-Lys-Phe-Phe-Ser-Arg-Gln-EDDnp, in which the Ser and Arg residues were substituted with various other amino acids, were synthesized and tested as substrates. Most of them were hydrolysed slowly, although they showed significant binding to hK1, as demonstrated by their competitive inhibition constants (K(i)). Using this information, six peptides were designed, synthesized and assayed as inhibitors of hK1. Abz-Lys-Phe-Phe-Pro-Arg-Gln-EDDnp, Abz-Lys-Phe-Arg-Pro-Arg-Gln-EDDnp and acetyl-Lys-Phe-Phe-Pro-Leu-Glu-NH(2) inhibited hK1 in the range 20-30 nM (letters in italics denote the D-form of the amino acid). The peptide acetyl-Lys-Phe-Phe-Pro-Leu-Glu-NH(2) was a weak inhibitor for other serine proteases, as indicated by the higher K (i) values compared with hK1, but this peptide was a potent inhibitor of human plasma kallikrein, which has a K (i) value of 8 nM. This result was surprising, since this enzyme is known to be a restricted arginyl-hydrolase. In conclusion, acetyl-Lys-Phe-Phe-Pro-Leu-Glu-NH(2) can be used as a leader compound to design specific inhibitors for hK1, plasma kallikrein, or for both at same time, if the inhibition of kinin release is the main goal.
Full Text
The Full Text of this article is available as a PDF (101.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alhenc-Gelas F., Marchetti J., Allegrini J., Corvol P., Menard J. Measurement of urinary kallikrein activity. Species differences in kinin production. Biochim Biophys Acta. 1981 Nov 5;677(3-4):477–488. doi: 10.1016/0304-4165(81)90262-2. [DOI] [PubMed] [Google Scholar]
- Baumgarten C. R., Nichols R. C., Naclerio R. M., Proud D. Concentrations of glandular kallikrein in human nasal secretions increase during experimentally induced allergic rhinitis. J Immunol. 1986 Aug 15;137(4):1323–1328. [PubMed] [Google Scholar]
- Bhoola K. D., Figueroa C. D., Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992 Mar;44(1):1–80. [PubMed] [Google Scholar]
- Chagas J. R., Juliano L., Prado E. S. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem. 1991 Feb 1;192(2):419–425. doi: 10.1016/0003-2697(91)90558-b. [DOI] [PubMed] [Google Scholar]
- Chagas J. R., Portaro F. C., Hirata I. Y., Almeida P. C., Juliano M. A., Juliano L., Prado E. S. Determinants of the unusual cleavage specificity of lysyl-bradykinin-releasing kallikreins. Biochem J. 1995 Feb 15;306(Pt 1):63–69. doi: 10.1042/bj3060063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai K. X., Chen L. M., Chao J., Chao L. Kallistatin: a novel human serine proteinase inhibitor. Molecular cloning, tissue distribution, and expression in Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):24498–24505. [PubMed] [Google Scholar]
- Chen Z., Bode W. Refined 2.5 A X-ray crystal structure of the complex formed by porcine kallikrein A and the bovine pancreatic trypsin inhibitor. Crystallization, Patterson search, structure determination, refinement, structure and comparison with its components and with the bovine trypsin-pancreatic trypsin inhibitor complex. J Mol Biol. 1983 Feb 25;164(2):283–311. doi: 10.1016/0022-2836(83)90078-5. [DOI] [PubMed] [Google Scholar]
- Christiansen S. C., Proud D., Cochrane C. G. Detection of tissue kallikrein in the bronchoalveolar lavage fluid of asthmatic subjects. J Clin Invest. 1987 Jan;79(1):188–197. doi: 10.1172/JCI112782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Del Nery E., Chagas J. R., Juliano M. A., Prado E. S., Juliano L. Evaluation of the extent of the binding site in human tissue kallikrein by synthetic substrates with sequences of human kininogen fragments. Biochem J. 1995 Nov 15;312(Pt 1):233–238. doi: 10.1042/bj3120233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fiedler F., Geiger R., Hirschauer C., Leysath G. Peptide esters and nitroanilides as substrates for the assay of human urinary kallikrein. Hoppe Seylers Z Physiol Chem. 1978 Dec;359(12):1667–1673. doi: 10.1515/bchm2.1978.359.2.1667. [DOI] [PubMed] [Google Scholar]
- Hosoi K., Tsunasawa S., Kurihara K., Aoyama H., Ueha T., Murai T., Sakiyama F. Identification of mK1, a true tissue (glandular) kallikrein of mouse submandibular gland: tissue distribution and a comparison of kinin-releasing activity with other submandibular kallikreins. J Biochem. 1994 Jan;115(1):137–143. doi: 10.1093/oxfordjournals.jbchem.a124288. [DOI] [PubMed] [Google Scholar]
- Kato H., Enjyoji K., Miyata T., Hayashi I., Oh-ishi S., Iwanaga S. Demonstration of arginyl-bradykinin moiety in rat HMW kininogen: direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem Biophys Res Commun. 1985 Feb 28;127(1):289–295. doi: 10.1016/s0006-291x(85)80157-1. [DOI] [PubMed] [Google Scholar]
- Katz B. A., Liu B., Barnes M., Springman E. B. Crystal structure of recombinant human tissue kallikrein at 2.0 A resolution. Protein Sci. 1998 Apr;7(4):875–885. doi: 10.1002/pro.5560070405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald R. J., Margolius H. S., Erdös E. G. Molecular biology of tissue kallikrein. Biochem J. 1988 Jul 15;253(2):313–321. doi: 10.1042/bj2530313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melo R. L., Alves L. C., Del Nery E., Juliano L., Juliano M. A. Synthesis and hydrolysis by cysteine and serine proteases of short internally quenched fluorogenic peptides. Anal Biochem. 2001 Jun 1;293(1):71–77. doi: 10.1006/abio.2001.5115. [DOI] [PubMed] [Google Scholar]
- Nicklin M. J., Barrett A. J. Inhibition of cysteine proteinases and dipeptidyl peptidase I by egg-white cystatin. Biochem J. 1984 Oct 1;223(1):245–253. doi: 10.1042/bj2230245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oliveira L., Araujo-Viel M. S., Juliano L., Prado E. S. Substrate activation of porcine pancreatic kallikrein by N alpha derivatives of arginine 4-nitroanilides. Biochemistry. 1987 Aug 11;26(16):5032–5035. doi: 10.1021/bi00390a022. [DOI] [PubMed] [Google Scholar]
- Pimenta D. C., Chao J., Chao L., Juliano M. A., Juliano L. Specificity of human tissue kallikrein towards substrates containing Phe-Phe pair of amino acids. Biochem J. 1999 Apr 15;339(Pt 2):473–479. [PMC free article] [PubMed] [Google Scholar]
- Pimenta D. C., Juliano M. A., Juliano L. Hydrolysis of somatostatin by human tissue kallikrein after the amino acid pair phe-Phe. Biochem J. 1997 Oct 1;327(Pt 1):27–30. doi: 10.1042/bj3270027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Proud D., Togias A., Naclerio R. M., Crush S. A., Norman P. S., Lichtenstein L. M. Kinins are generated in vivo following nasal airway challenge of allergic individuals with allergen. J Clin Invest. 1983 Nov;72(5):1678–1685. doi: 10.1172/JCI111127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radisky Evette S., Koshland Daniel E., Jr A clogged gutter mechanism for protease inhibitors. Proc Natl Acad Sci U S A. 2002 Jul 25;99(16):10316–10321. doi: 10.1073/pnas.112332899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sampaio C. A., Sampaio M. U., Prado E. S. Active-site titration of horse urinary kallikrein. Hoppe Seylers Z Physiol Chem. 1984 Mar;365(3):297–302. doi: 10.1515/bchm2.1984.365.1.297. [DOI] [PubMed] [Google Scholar]
- Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
- Shimamoto K., Chao J., Margolius H. S. The radioimmunoassay of human urinary kallikrein and comparisons with kallikrein activity measurements. J Clin Endocrinol Metab. 1980 Oct;51(4):840–848. doi: 10.1210/jcem-51-4-840. [DOI] [PubMed] [Google Scholar]
- WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanaka K., Okada Y., Tsuda Y., Okamoto U., Hijikata-Okunomiya A., Okamoto S. Synthesis of trans-4-aminomethylcyclohexanecarbonyl-L- and -D-phenylalanine-4-carboxymethylanilide and examination of their inhibitory activity against plasma kallikrein. Chem Pharm Bull (Tokyo) 1992 Jul;40(7):1814–1817. doi: 10.1248/cpb.40.1814. [DOI] [PubMed] [Google Scholar]
- Yousef George M., Diamandis Eleftherios P. Expanded human tissue kallikrein family--a novel panel of cancer biomarkers. Tumour Biol. 2002 May-Jun;23(3):185–192. doi: 10.1159/000064027. [DOI] [PubMed] [Google Scholar]
- Zhou G. X., Chao L., Chao J. Kallistatin: a novel human tissue kallikrein inhibitor. Purification, characterization, and reactive center sequence. J Biol Chem. 1992 Dec 25;267(36):25873–25880. [PubMed] [Google Scholar]