Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):877–885. doi: 10.1042/BJ20021731

Haem oxygenase 1 gene induction by glucose deprivation is mediated by reactive oxygen species via the mitochondrial electron-transport chain.

Se-Ho Chang 1, Jairo Garcia 1, J Andres Melendez 1, Michael S Kilberg 1, Anupam Agarwal 1
PMCID: PMC1223354  PMID: 12585963

Abstract

Glucose depletion results in cellular stress and reactive oxygen species (ROS) production, which evokes adaptive and protective responses. One such protective response is the induction of haem oxygenase 1 (HO-1), which catalyses the rate-limiting step in haem degradation, liberating iron, CO and biliverdin. The present study evaluated the role of ROS and the mitochondrial electron-transport chain in the induction of HO-1 by glucose deprivation in HepG2 hepatoma cells. Either N-acetylcysteine, an antioxidant, or deferoxamine, an iron chelator, resulted in a dose-dependent inhibition of HO-1 mRNA and protein induction during glucose deprivation, suggesting a redox- and iron-dependent mechanism. Inhibitors of electron-transport chain complex III, antimycin A and myxothiazol, the ATP synthase inhibitor oligomycin and ATP depletion with 2-deoxyglucose or glucosamine also blocked HO-1 induction. To address the involvement of ROS further, specifically H(2)O(2), we showed that overexpression of catalase completely blocked HO-1 activation by glucose deprivation. In contrast, inhibition of nuclear factor kappa B, mitogen-activated protein kinase (MAPK), protein kinase A, protein kinase C, phosphoinositide 3-kinase, cyclo-oxygenase or cytosolic phospholipase A(2), did not prevent HO-1 induction. These results demonstrate that activation of the HO-1 gene by glucose deprivation is mediated by a 'glucose metabolic response' pathway via generation of ROS and that the pathway requires a functional electron-transport chain.

Full Text

The Full Text of this article is available as a PDF (311.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal A., Balla J., Balla G., Croatt A. J., Vercellotti G. M., Nath K. A. Renal tubular epithelial cells mimic endothelial cells upon exposure to oxidized LDL. Am J Physiol. 1996 Oct;271(4 Pt 2):F814–F823. doi: 10.1152/ajprenal.1996.271.4.F814. [DOI] [PubMed] [Google Scholar]
  2. Alam J., Wicks C., Stewart D., Gong P., Touchard C., Otterbein S., Choi A. M., Burow M. E., Tou J. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J Biol Chem. 2000 Sep 8;275(36):27694–27702. doi: 10.1074/jbc.M004729200. [DOI] [PubMed] [Google Scholar]
  3. Arnold R. S., Shi J., Murad E., Whalen A. M., Sun C. Q., Polavarapu R., Parthasarathy S., Petros J. A., Lambeth J. D. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci U S A. 2001 May 1;98(10):5550–5555. doi: 10.1073/pnas.101505898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balla G., Jacob H. S., Balla J., Rosenberg M., Nath K., Apple F., Eaton J. W., Vercellotti G. M. Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem. 1992 Sep 5;267(25):18148–18153. [PubMed] [Google Scholar]
  5. Bennett B. L., Sasaki D. T., Murray B. W., O'Leary E. C., Sakata S. T., Xu W., Leisten J. C., Motiwala A., Pierce S., Satoh Y. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13681–13686. doi: 10.1073/pnas.251194298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blackburn R. V., Spitz D. R., Liu X., Galoforo S. S., Sim J. E., Ridnour L. A., Chen J. C., Davis B. H., Corry P. M., Lee Y. J. Metabolic oxidative stress activates signal transduction and gene expression during glucose deprivation in human tumor cells. Free Radic Biol Med. 1999 Feb;26(3-4):419–430. doi: 10.1016/s0891-5849(98)00217-2. [DOI] [PubMed] [Google Scholar]
  7. Brouard S., Otterbein L. E., Anrather J., Tobiasch E., Bach F. H., Choi A. M., Soares M. P. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med. 2000 Oct 2;192(7):1015–1026. doi: 10.1084/jem.192.7.1015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Callejas Nuria A., Casado Marta, Boscá Lisardo, Martín-Sanz Paloma. Absence of nuclear factor kappaB inhibition by NSAIDs in hepatocytes. Hepatology. 2002 Feb;35(2):341–348. doi: 10.1053/jhep.2002.31163. [DOI] [PubMed] [Google Scholar]
  9. Chang Se-Ho, Barbosa-Tessmann Ione, Chen Chin, Kilberg Michael S., Agarwal Anupam. Glucose deprivation induces heme oxygenase-1 gene expression by a pathway independent of the unfolded protein response. J Biol Chem. 2001 Nov 13;277(3):1933–1940. doi: 10.1074/jbc.M108921200. [DOI] [PubMed] [Google Scholar]
  10. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  11. Dhawan P., Bell A., Kumar A., Golden C., Mehta K. D. Critical role of p42/44(MAPK) activation in anisomycin and hepatocyte growth factor-induced LDL receptor expression: activation of Raf-1/Mek-1/p42/44(MAPK) cascade alone is sufficient to induce LDL receptor expression. J Lipid Res. 1999 Oct;40(10):1911–1919. [PubMed] [Google Scholar]
  12. Ebert B. L., Firth J. D., Ratcliffe P. J. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences. J Biol Chem. 1995 Dec 8;270(49):29083–29089. doi: 10.1074/jbc.270.49.29083. [DOI] [PubMed] [Google Scholar]
  13. Ferris C. D., Jaffrey S. R., Sawa A., Takahashi M., Brady S. D., Barrow R. K., Tysoe S. A., Wolosker H., Barañano D. E., Doré S. Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol. 1999 Jul;1(3):152–157. doi: 10.1038/11072. [DOI] [PubMed] [Google Scholar]
  14. Finkel T. Oxygen radicals and signaling. Curr Opin Cell Biol. 1998 Apr;10(2):248–253. doi: 10.1016/s0955-0674(98)80147-6. [DOI] [PubMed] [Google Scholar]
  15. Fogg S., Agarwal A., Nick H. S., Visner G. A. Iron regulates hyperoxia-dependent human heme oxygenase 1 gene expression in pulmonary endothelial cells. Am J Respir Cell Mol Biol. 1999 Apr;20(4):797–804. doi: 10.1165/ajrcmb.20.4.3477. [DOI] [PubMed] [Google Scholar]
  16. Goossens V., Stangé G., Moens K., Pipeleers D., Grooten J. Regulation of tumor necrosis factor-induced, mitochondria- and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal. 1999 Fall;1(3):285–295. doi: 10.1089/ars.1999.1.3-285. [DOI] [PubMed] [Google Scholar]
  17. Hill-Kapturczak N., Thamilselvan V., Liu F., Nick H. S., Agarwal A. Mechanism of heme oxygenase-1 gene induction by curcumin in human renal proximal tubule cells. Am J Physiol Renal Physiol. 2001 Nov;281(5):F851–F859. doi: 10.1152/ajprenal.2001.281.5.F851. [DOI] [PubMed] [Google Scholar]
  18. Hill-Kapturczak N., Truong L., Thamilselvan V., Visner G. A., Nick H. S., Agarwal A. Smad7-dependent regulation of heme oxygenase-1 by transforming growth factor-beta in human renal epithelial cells. J Biol Chem. 2000 Dec 29;275(52):40904–40909. doi: 10.1074/jbc.M006621200. [DOI] [PubMed] [Google Scholar]
  19. Hresko R. C., Heimberg H., Chi M. M., Mueckler M. Glucosamine-induced insulin resistance in 3T3-L1 adipocytes is caused by depletion of intracellular ATP. J Biol Chem. 1998 Aug 7;273(32):20658–20668. doi: 10.1074/jbc.273.32.20658. [DOI] [PubMed] [Google Scholar]
  20. Immenschuh S., Kietzmann T., Hinke V., Wiederhold M., Katz N., Muller-Eberhard U. The rat heme oxygenase-1 gene is transcriptionally induced via the protein kinase A signaling pathway in rat hepatocyte cultures. Mol Pharmacol. 1998 Mar;53(3):483–491. doi: 10.1124/mol.53.3.483. [DOI] [PubMed] [Google Scholar]
  21. Immenschuh S., Ramadori G. Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol. 2000 Oct 15;60(8):1121–1128. doi: 10.1016/s0006-2952(00)00443-3. [DOI] [PubMed] [Google Scholar]
  22. Jeney Viktória, Balla József, Yachie Akihiro, Varga Zsuzsa, Vercellotti Gregory M., Eaton John W., Balla György. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002 Aug 1;100(3):879–887. doi: 10.1182/blood.v100.3.879. [DOI] [PubMed] [Google Scholar]
  23. Kehrer J. P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000 Aug 14;149(1):43–50. doi: 10.1016/s0300-483x(00)00231-6. [DOI] [PubMed] [Google Scholar]
  24. Keyse S. M., Tyrrell R. M. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc Natl Acad Sci U S A. 1989 Jan;86(1):99–103. doi: 10.1073/pnas.86.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kvam E., Noel A., Basu-Modak S., Tyrrell R. M. Cyclooxygenase dependent release of heme from microsomal hemeproteins correlates with induction of heme oxygenase 1 transcription in human fibroblasts. Free Radic Biol Med. 1999 Mar;26(5-6):511–517. doi: 10.1016/s0891-5849(98)00224-x. [DOI] [PubMed] [Google Scholar]
  26. Lee A. S. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci. 2001 Aug;26(8):504–510. doi: 10.1016/s0968-0004(01)01908-9. [DOI] [PubMed] [Google Scholar]
  27. Lee J., Bruce-Keller A. J., Kruman Y., Chan S. L., Mattson M. P. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins. J Neurosci Res. 1999 Jul 1;57(1):48–61. doi: 10.1002/(SICI)1097-4547(19990701)57:1<48::AID-JNR6>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  28. Lee Y. J., Galoforo S. S., Berns C. M., Chen J. C., Davis B. H., Sim J. E., Corry P. M., Spitz D. R. Glucose deprivation-induced cytotoxicity and alterations in mitogen-activated protein kinase activation are mediated by oxidative stress in multidrug-resistant human breast carcinoma cells. J Biol Chem. 1998 Feb 27;273(9):5294–5299. doi: 10.1074/jbc.273.9.5294. [DOI] [PubMed] [Google Scholar]
  29. Lee Y. J., Galoforo S. S., Sim J. E., Ridnour L. A., Choi J., Forman H. J., Corry P. M., Spitz D. R. Dominant-negative Jun N-terminal protein kinase (JNK-1) inhibits metabolic oxidative stress during glucose deprivation in a human breast carcinoma cell line. Free Radic Biol Med. 2000 Feb 15;28(4):575–584. doi: 10.1016/s0891-5849(99)00267-1. [DOI] [PubMed] [Google Scholar]
  30. Liang M., Croatt A. J., Nath K. A. Mechanisms underlying induction of heme oxygenase-1 by nitric oxide in renal tubular epithelial cells. Am J Physiol Renal Physiol. 2000 Oct;279(4):F728–F735. doi: 10.1152/ajprenal.2000.279.4.F728. [DOI] [PubMed] [Google Scholar]
  31. Llesuy S. F., Tomaro M. L. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta. 1994 Aug 11;1223(1):9–14. doi: 10.1016/0167-4889(94)90067-1. [DOI] [PubMed] [Google Scholar]
  32. Maines M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. [DOI] [PubMed] [Google Scholar]
  33. Markley Michele A., Pierro Agostino, Eaton Simon. Hepatocyte mitochondrial metabolism is inhibited in neonatal rat endotoxaemia: effects of glutamine. Clin Sci (Lond) 2002 Mar;102(3):337–344. [PubMed] [Google Scholar]
  34. Masuya Y., Hioki K., Tokunaga R., Taketani S. Involvement of the tyrosine phosphorylation pathway in induction of human heme oxygenase-1 by hemin, sodium arsenite, and cadmium chloride. J Biochem. 1998 Sep;124(3):628–633. doi: 10.1093/oxfordjournals.jbchem.a022158. [DOI] [PubMed] [Google Scholar]
  35. Nadkarni V., Gabbay K. H., Bohren K. M., Sheikh-Hamad D. Osmotic response element enhancer activity. Regulation through p38 kinase and mitogen-activated extracellular signal-regulated kinase kinase. J Biol Chem. 1999 Jul 16;274(29):20185–20190. doi: 10.1074/jbc.274.29.20185. [DOI] [PubMed] [Google Scholar]
  36. Nath K. A., Ngo E. O., Hebbel R. P., Croatt A. J., Zhou B., Nutter L. M. alpha-Ketoacids scavenge H2O2 in vitro and in vivo and reduce menadione-induced DNA injury and cytotoxicity. Am J Physiol. 1995 Jan;268(1 Pt 1):C227–C236. doi: 10.1152/ajpcell.1995.268.1.C227. [DOI] [PubMed] [Google Scholar]
  37. Otterbein L. E., Bach F. H., Alam J., Soares M., Tao Lu H., Wysk M., Davis R. J., Flavell R. A., Choi A. M. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000 Apr;6(4):422–428. doi: 10.1038/74680. [DOI] [PubMed] [Google Scholar]
  38. Pahl H. L. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev. 1999 Jul;79(3):683–701. doi: 10.1152/physrev.1999.79.3.683. [DOI] [PubMed] [Google Scholar]
  39. Platt J. L., Nath K. A. Heme oxygenase: protective gene or Trojan horse. Nat Med. 1998 Dec;4(12):1364–1365. doi: 10.1038/3947. [DOI] [PubMed] [Google Scholar]
  40. Poss K. D., Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10919–10924. doi: 10.1073/pnas.94.20.10919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ravagnan Luigi, Roumier Thomas, Kroemer Guido. Mitochondria, the killer organelles and their weapons. J Cell Physiol. 2002 Aug;192(2):131–137. doi: 10.1002/jcp.10111. [DOI] [PubMed] [Google Scholar]
  42. Rodríguez A. M., Carrico P. M., Mazurkiewicz J. E., Meléndez J. A. Mitochondrial or cytosolic catalase reverses the MnSOD-dependent inhibition of proliferation by enhancing respiratory chain activity, net ATP production, and decreasing the steady state levels of H(2)O(2). Free Radic Biol Med. 2000 Nov 1;29(9):801–813. doi: 10.1016/s0891-5849(00)00362-2. [DOI] [PubMed] [Google Scholar]
  43. Rogers R. J., Monnier J. M., Nick H. S. Tumor necrosis factor-alpha selectively induces MnSOD expression via mitochondria-to-nucleus signaling, whereas interleukin-1beta utilizes an alternative pathway. J Biol Chem. 2001 Mar 22;276(23):20419–20427. doi: 10.1074/jbc.M008915200. [DOI] [PubMed] [Google Scholar]
  44. Ryter S. W., Si M., Lai C. C., Su C. Y. Regulation of endothelial heme oxygenase activity during hypoxia is dependent on chelatable iron. Am J Physiol Heart Circ Physiol. 2000 Dec;279(6):H2889–H2897. doi: 10.1152/ajpheart.2000.279.6.H2889. [DOI] [PubMed] [Google Scholar]
  45. Ryter Stefan W., Otterbein Leo E., Morse Danielle, Choi Augustine M. K. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem. 2002 May-Jun;234-235(1-2):249–263. doi: 10.1023/A:1015957026924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sheridan A. M., Schwartz J. H., Kroshian V. M., Tercyak A. M., Laraia J., Masino S., Lieberthal W. Renal mouse proximal tubular cells are more susceptible than MDCK cells to chemical anoxia. Am J Physiol. 1993 Sep;265(3 Pt 2):F342–F350. doi: 10.1152/ajprenal.1993.265.3.F342. [DOI] [PubMed] [Google Scholar]
  47. Song M. S., Park Y. K., Lee J. H., Park K. Induction of glucose-regulated protein 78 by chronic hypoxia in human gastric tumor cells through a protein kinase C-epsilon/ERK/AP-1 signaling cascade. Cancer Res. 2001 Nov 15;61(22):8322–8330. [PubMed] [Google Scholar]
  48. Spitz D. R., Sim J. E., Ridnour L. A., Galoforo S. S., Lee Y. J. Glucose deprivation-induced oxidative stress in human tumor cells. A fundamental defect in metabolism? Ann N Y Acad Sci. 2000;899:349–362. doi: 10.1111/j.1749-6632.2000.tb06199.x. [DOI] [PubMed] [Google Scholar]
  49. Stocker R. Induction of haem oxygenase as a defence against oxidative stress. Free Radic Res Commun. 1990;9(2):101–112. doi: 10.3109/10715769009148577. [DOI] [PubMed] [Google Scholar]
  50. Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987 Feb 27;235(4792):1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
  51. Tacchini L., Dansi P., Matteucci E., Desiderio M. A. Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis. 2001 Sep;22(9):1363–1371. doi: 10.1093/carcin/22.9.1363. [DOI] [PubMed] [Google Scholar]
  52. Terry C. M., Clikeman J. A., Hoidal J. R., Callahan K. S. TNF-alpha and IL-1alpha induce heme oxygenase-1 via protein kinase C, Ca2+, and phospholipase A2 in endothelial cells. Am J Physiol. 1999 May;276(5 Pt 2):H1493–H1501. doi: 10.1152/ajpheart.1999.276.5.H1493. [DOI] [PubMed] [Google Scholar]
  53. True A. L., Rahman A., Malik A. B. Activation of NF-kappaB induced by H(2)O(2) and TNF-alpha and its effects on ICAM-1 expression in endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2000 Aug;279(2):L302–L311. doi: 10.1152/ajplung.2000.279.2.L302. [DOI] [PubMed] [Google Scholar]
  54. Wu Defeng, Cederbaum Arthur I. Role of p38 MAPK in CYP2E1-dependent arachidonic acid toxicity. J Biol Chem. 2002 Oct 25;278(2):1115–1124. doi: 10.1074/jbc.M207856200. [DOI] [PubMed] [Google Scholar]
  55. Wu G., Haynes T. E., Li H., Yan W., Meininger C. J. Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J. 2001 Jan 15;353(Pt 2):245–252. doi: 10.1042/0264-6021:3530245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Yachie A., Niida Y., Wada T., Igarashi N., Kaneda H., Toma T., Ohta K., Kasahara Y., Koizumi S. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999 Jan;103(1):129–135. doi: 10.1172/JCI4165. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES