Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 1;371(Pt 3):669–673. doi: 10.1042/BJ20030230

Nucleotide-dependent protein folding in the type II chaperonin from the mesophilic archaeon Methanococcus maripaludis.

Andrew R Kusmierczyk 1, Jörg Martin 1
PMCID: PMC1223359  PMID: 12628000

Abstract

We report the characterization of the first chaperonin (Mm-cpn) from a mesophilic archaeon, Methanococcus maripaludis. The single gene was cloned from genomic DNA and expressed in Escherichia coli to produce a recombinant protein of 543 amino acids. In contrast with other known archaeal chaperonins, Mm-cpn is fully functional in all respects under physiological conditions of 37 degrees C. The complex has Mg(2+)-dependent ATPase activity and can prevent the aggregation of citrate synthase. It promotes a high-yield refolding of guanidinium-chloride-denatured rhodanese in a nucleotide-dependent manner. ATP binding is sufficient to effect folding, but ATP hydrolysis is not essential.

Full Text

The Full Text of this article is available as a PDF (169.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrä S., Frey G., Jaenicke R., Stetter K. O. The thermosome from Methanopyrus kandleri possesses an NH4+-dependent ATPase activity. Eur J Biochem. 1998 Jul 1;255(1):93–99. doi: 10.1046/j.1432-1327.1998.2550093.x. [DOI] [PubMed] [Google Scholar]
  2. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
  3. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  4. Chandrasekhar G. N., Tilly K., Woolford C., Hendrix R., Georgopoulos C. Purification and properties of the groES morphogenetic protein of Escherichia coli. J Biol Chem. 1986 Sep 15;261(26):12414–12419. [PubMed] [Google Scholar]
  5. Dennis P. P. Ancient ciphers: translation in Archaea. Cell. 1997 Jun 27;89(7):1007–1010. doi: 10.1016/s0092-8674(00)80288-3. [DOI] [PubMed] [Google Scholar]
  6. Ditzel L., Löwe J., Stock D., Stetter K. O., Huber H., Huber R., Steinbacher S. Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell. 1998 Apr 3;93(1):125–138. doi: 10.1016/s0092-8674(00)81152-6. [DOI] [PubMed] [Google Scholar]
  7. Farr G. W., Furtak K., Rowland M. B., Ranson N. A., Saibil H. R., Kirchhausen T., Horwich A. L. Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell. 2000 Mar 3;100(5):561–573. doi: 10.1016/s0092-8674(00)80692-3. [DOI] [PubMed] [Google Scholar]
  8. Furutani M., Iida T., Yoshida T., Maruyama T. Group II chaperonin in a thermophilic methanogen, Methanococcus thermolithotrophicus. Chaperone activity and filament-forming ability. J Biol Chem. 1998 Oct 23;273(43):28399–28407. doi: 10.1074/jbc.273.43.28399. [DOI] [PubMed] [Google Scholar]
  9. Gutsche I., Essen L. O., Baumeister W. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol. 1999 Oct 22;293(2):295–312. doi: 10.1006/jmbi.1999.3008. [DOI] [PubMed] [Google Scholar]
  10. Gutsche I., Holzinger J., Rauh N., Baumeister W., May R. P. ATP-induced structural change of the thermosome is temperature-dependent. J Struct Biol. 2001 Aug;135(2):139–146. doi: 10.1006/jsbi.2001.4373. [DOI] [PubMed] [Google Scholar]
  11. Hayer-Hartl M. K., Weber F., Hartl F. U. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis. EMBO J. 1996 Nov 15;15(22):6111–6121. [PMC free article] [PubMed] [Google Scholar]
  12. Klumpp M., Baumeister W., Essen L. O. Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin. Cell. 1997 Oct 17;91(2):263–270. doi: 10.1016/s0092-8674(00)80408-0. [DOI] [PubMed] [Google Scholar]
  13. Kubota H., Hynes G., Carne A., Ashworth A., Willison K. Identification of six Tcp-1-related genes encoding divergent subunits of the TCP-1-containing chaperonin. Curr Biol. 1994 Feb 1;4(2):89–99. doi: 10.1016/s0960-9822(94)00024-2. [DOI] [PubMed] [Google Scholar]
  14. Kusmierczyk A. R., Martin J. High salt-induced conversion of Escherichia coli GroEL into a fully functional thermophilic chaperonin. J Biol Chem. 2000 Oct 27;275(43):33504–33511. doi: 10.1074/jbc.M006256200. [DOI] [PubMed] [Google Scholar]
  15. Langer T., Pfeifer G., Martin J., Baumeister W., Hartl F. U. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 1992 Dec;11(13):4757–4765. doi: 10.1002/j.1460-2075.1992.tb05581.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lanzetta P. A., Alvarez L. J., Reinach P. S., Candia O. A. An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem. 1979 Nov 15;100(1):95–97. doi: 10.1016/0003-2697(79)90115-5. [DOI] [PubMed] [Google Scholar]
  17. Large Andrew T., Kovacs Eszter, Lund Peter A. Properties of the chaperonin complex from the halophilic archaeon Haloferax volcanii. FEBS Lett. 2002 Dec 18;532(3):309–312. doi: 10.1016/s0014-5793(02)03685-2. [DOI] [PubMed] [Google Scholar]
  18. Llorca O., Martín-Benito J., Grantham J., Ritco-Vonsovici M., Willison K. R., Carrascosa J. L., Valpuesta J. M. The 'sequential allosteric ring' mechanism in the eukaryotic chaperonin-assisted folding of actin and tubulin. EMBO J. 2001 Aug 1;20(15):4065–4075. doi: 10.1093/emboj/20.15.4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martin J., Mayhew M., Langer T., Hartl F. U. The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature. 1993 Nov 18;366(6452):228–233. doi: 10.1038/366228a0. [DOI] [PubMed] [Google Scholar]
  20. Minuth T., Frey G., Lindner P., Rachel R., Stetter K. O., Jaenicke R. Recombinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur J Biochem. 1998 Dec 1;258(2):837–845. doi: 10.1046/j.1432-1327.1998.2580837.x. [DOI] [PubMed] [Google Scholar]
  21. Roobol A., Grantham J., Whitaker H. C., Carden M. J. Disassembly of the cytosolic chaperonin in mammalian cell extracts at intracellular levels of K+ and ATP. J Biol Chem. 1999 Jul 2;274(27):19220–19227. doi: 10.1074/jbc.274.27.19220. [DOI] [PubMed] [Google Scholar]
  22. Soppa J. Normalized nucleotide frequencies allow the definition of archaeal promoter elements for different archaeal groups and reveal base-specific TFB contacts upstream of the TATA box. Mol Microbiol. 1999 Mar;31(5):1589–1592. doi: 10.1046/j.1365-2958.1999.01274.x. [DOI] [PubMed] [Google Scholar]
  23. Yifrach O., Horovitz A. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry. 1995 Apr 25;34(16):5303–5308. doi: 10.1021/bi00016a001. [DOI] [PubMed] [Google Scholar]
  24. Yoshida T., Yohda M., Iida T., Maruyama T., Taguchi H., Yazaki K., Ohta T., Odaka M., Endo I., Kagawa Y. Structural and functional characterization of homo-oligomeric complexes of alpha and beta chaperonin subunits from the hyperthermophilic archaeum Thermococcus strain KS-1. J Mol Biol. 1997 Oct 31;273(3):635–645. doi: 10.1006/jmbi.1997.1337. [DOI] [PubMed] [Google Scholar]
  25. Yoshida Takao, Kawaguchi Rika, Taguchi Hideki, Yoshida Masasuke, Yasunaga Takuo, Wakabayashi Takeyuki, Yohda Masafumi, Maruyama Tadashi. Archaeal group II chaperonin mediates protein folding in the cis-cavity without a detachable GroES-like co-chaperonin. J Mol Biol. 2002 Jan 4;315(1):73–85. doi: 10.1006/jmbi.2001.5220. [DOI] [PubMed] [Google Scholar]
  26. Zahn R., Buckle A. M., Perrett S., Johnson C. M., Corrales F. J., Golbik R., Fersht A. R. Chaperone activity and structure of monomeric polypeptide binding domains of GroEL. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15024–15029. doi: 10.1073/pnas.93.26.15024. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES