Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):173–181. doi: 10.1042/BJ20021972

Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites.

Jeremy P E Spencer 1, Gunter G C Kuhnle 1, Robert J Williams 1, Catherine Rice-Evans 1
PMCID: PMC1223367  PMID: 12578560

Abstract

Understanding the cellular effects of flavonoid metabolites is important for predicting which dietary flavonoids might be most beneficial in vivo. Here we investigate the bioactivity in dermal fibroblasts of the major reported in vivo metabolites of quercetin, i.e. 3'-O-methyl quercetin, 4'-O-methyl quercetin and quercetin 7-O-beta-D-glucuronide, relative to that of quercetin, in terms of their further metabolism and their resulting cytotoxic and/or cytoprotective effects in the absence and presence of oxidative stress. Uptake experiments indicate that exposure to quercetin led to the generation of two novel cellular metabolites, one characterized as a 2'-glutathionyl quercetin conjugate and another product with similar spectral characteristics but 1 mass unit lower, putatively a quinone/quinone methide. A similar product was identified in cells exposed to 3'-O-methyl quercetin, but not in the lysates of those exposed to its 4'-O-methyl counterpart, suggesting that its formation is related to oxidative metabolism. There was no uptake or metabolism of quercetin 7-O-beta-D-glucuronide by fibroblasts. Formation of oxidative metabolites may explain the observed concentration-dependent toxicity of quercetin and 3'-O-methyl quercetin, whereas the formation of a 2'-glutathionyl quercetin conjugate is interpreted as a detoxification step. Both O -methylated metabolites conferred less protection than quercetin against peroxide-induced damage, and quercetin glucuronide was ineffective. The ability to modulate cellular toxicity paralleled the ability of the compounds to decrease the level of peroxide-induced caspase-3 activation. Our data suggest that the actions of quercetin and its metabolites in vivo are mediated by intracellular metabolites.

Full Text

The Full Text of this article is available as a PDF (181.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awad H. M., Boersma M. G., Boeren S., van Bladeren P. J., Vervoort J., Rietjens I. M. Structure-activity study on the quinone/quinone methide chemistry of flavonoids. Chem Res Toxicol. 2001 Apr;14(4):398–408. doi: 10.1021/tx000216e. [DOI] [PubMed] [Google Scholar]
  2. Awad H. M., Boersma M. G., Vervoort J., Rietjens I. M. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adducts. Arch Biochem Biophys. 2000 Jun 15;378(2):224–233. doi: 10.1006/abbi.2000.1832. [DOI] [PubMed] [Google Scholar]
  3. Awad Hanem M., Boersma Marelle G., Boeren Sjef, van Bladeren Peter J., Vervoort Jacques, Rietjens Ivonne M. C. M. The regioselectivity of glutathione adduct formation with flavonoid quinone/quinone methides is pH-dependent. Chem Res Toxicol. 2002 Mar;15(3):343–351. doi: 10.1021/tx010132l. [DOI] [PubMed] [Google Scholar]
  4. Awad Hanem M., Boersma Marelle G., Boeren Sjef, van der Woude Hester, van Zanden Jelmer, van Bladeren Peter J., Vervoort Jacques, Rietjens Ivonne M. C. M. Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system. FEBS Lett. 2002 Jun 5;520(1-3):30–34. doi: 10.1016/s0014-5793(02)02754-0. [DOI] [PubMed] [Google Scholar]
  5. Bestwick C. S., Milne L. Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells. Biochim Biophys Acta. 2001 Sep 3;1528(1):49–59. doi: 10.1016/s0304-4165(01)00167-2. [DOI] [PubMed] [Google Scholar]
  6. Bolton Judy L. Quinoids, quinoid radicals, and phenoxyl radicals formed from estrogens and antiestrogens. Toxicology. 2002 Aug 1;177(1):55–65. doi: 10.1016/s0300-483x(02)00195-6. [DOI] [PubMed] [Google Scholar]
  7. Boulton D. W., Walle U. K., Walle T. Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism. J Pharm Pharmacol. 1999 Mar;51(3):353–359. doi: 10.1211/0022357991772367. [DOI] [PubMed] [Google Scholar]
  8. Breinholt V. M., Offord E. A., Brouwer C., Nielsen S. E., Brøsen K., Friedberg T. In vitro investigation of cytochrome P450-mediated metabolism of dietary flavonoids. Food Chem Toxicol. 2002 May;40(5):609–616. doi: 10.1016/s0278-6915(01)00125-9. [DOI] [PubMed] [Google Scholar]
  9. Cadenas E., Ernster L. Effect of superoxide dismutase on the autoxidation of hydroquinones formed during DT-diaphorase catalysis and glutathione nucleophilic addition. Adv Exp Med Biol. 1990;264:37–44. doi: 10.1007/978-1-4684-5730-8_6. [DOI] [PubMed] [Google Scholar]
  10. Carvalho Márcia, Hawksworth Gabrielle, Milhazes Nuno, Borges Fernanda, Monks Terrence J., Fernandes Eduarda, Carvalho Félix, Bastos Maria Lourdes. Role of metabolites in MDMA (ecstasy)-induced nephrotoxicity: an in vitro study using rat and human renal proximal tubular cells. Arch Toxicol. 2002 Aug 1;76(10):581–588. doi: 10.1007/s00204-002-0381-3. [DOI] [PubMed] [Google Scholar]
  11. Choi J. A., Kim J. Y., Lee J. Y., Kang C. M., Kwon H. J., Yoo Y. D., Kim T. W., Lee Y. S., Lee S. J. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001 Oct;19(4):837–844. doi: 10.3892/ijo.19.4.837. [DOI] [PubMed] [Google Scholar]
  12. Galati G., Moridani M. Y., Chan T. S., O'Brien P. J. Peroxidative metabolism of apigenin and naringenin versus luteolin and quercetin: glutathione oxidation and conjugation. Free Radic Biol Med. 2001 Feb 15;30(4):370–382. doi: 10.1016/s0891-5849(00)00481-0. [DOI] [PubMed] [Google Scholar]
  13. Galijatovic A., Otake Y., Walle U. K., Walle T. Induction of UDP-glucuronosyltransferase UGT1A1 by the flavonoid chrysin in Caco-2 cells--potential role in carcinogen bioinactivation. Pharm Res. 2001 Mar;18(3):374–379. doi: 10.1023/a:1011019417236. [DOI] [PubMed] [Google Scholar]
  14. Ishige K., Schubert D., Sagara Y. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med. 2001 Feb 15;30(4):433–446. doi: 10.1016/s0891-5849(00)00498-6. [DOI] [PubMed] [Google Scholar]
  15. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992 Nov;17(11):463–468. doi: 10.1016/0968-0004(92)90489-v. [DOI] [PubMed] [Google Scholar]
  16. Ishikawa Y., Kitamura M. Bioflavonoid quercetin inhibits mitosis and apoptosis of glomerular cells in vitro and in vivo. Biochem Biophys Res Commun. 2000 Dec 20;279(2):629–634. doi: 10.1006/bbrc.2000.4016. [DOI] [PubMed] [Google Scholar]
  17. Iverson S. L., Shen L., Anlar N., Bolton J. L. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Chem Res Toxicol. 1996 Mar;9(2):492–499. doi: 10.1021/tx950178c. [DOI] [PubMed] [Google Scholar]
  18. Iwashita K., Kobori M., Yamaki K., Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem. 2000 Sep;64(9):1813–1820. doi: 10.1271/bbb.64.1813. [DOI] [PubMed] [Google Scholar]
  19. Jørgensen L. V., Cornett C., Justesen U., Skibsted L. H., Dragsted L. O. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring. Free Radic Res. 1998 Oct;29(4):339–350. doi: 10.1080/10715769800300381. [DOI] [PubMed] [Google Scholar]
  20. Kobuchi H., Roy S., Sen C. K., Nguyen H. G., Packer L. Quercetin inhibits inducible ICAM-1 expression in human endothelial cells through the JNK pathway. Am J Physiol. 1999 Sep;277(3 Pt 1):C403–C411. doi: 10.1152/ajpcell.1999.277.3.C403. [DOI] [PubMed] [Google Scholar]
  21. Koga T., Meydani M. Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr. 2001 May;73(5):941–948. doi: 10.1093/ajcn/73.5.941. [DOI] [PubMed] [Google Scholar]
  22. Li H., Shen X. M., Dryhurst G. Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1) to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson's disease. J Neurochem. 1998 Nov;71(5):2049–2062. doi: 10.1046/j.1471-4159.1998.71052049.x. [DOI] [PubMed] [Google Scholar]
  23. MacGregor J. T., Jurd L. Mutagenicity of plant flavonoids: structural requirements for mutagenic activity in Salmonella typhimurium. Mutat Res. 1978 Dec;54(3):297–309. doi: 10.1016/0165-1161(78)90020-1. [DOI] [PubMed] [Google Scholar]
  24. Metodiewa D., Jaiswal A. K., Cenas N., Dickancaité E., Segura-Aguilar J. Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med. 1999 Jan;26(1-2):107–116. doi: 10.1016/s0891-5849(98)00167-1. [DOI] [PubMed] [Google Scholar]
  25. Monks T. J., Lau S. S. Biological reactivity of polyphenolic-glutathione conjugates. Chem Res Toxicol. 1997 Dec;10(12):1296–1313. doi: 10.1021/tx9700937. [DOI] [PubMed] [Google Scholar]
  26. Monks T. J., Lau S. S. The pharmacology and toxicology of polyphenolic-glutathione conjugates. Annu Rev Pharmacol Toxicol. 1998;38:229–255. doi: 10.1146/annurev.pharmtox.38.1.229. [DOI] [PubMed] [Google Scholar]
  27. Morand C., Manach C., Crespy V., Remesy C. Respective bioavailability of quercetin aglycone and its glycosides in a rat model. Biofactors. 2000;12(1-4):169–174. doi: 10.1002/biof.5520120127. [DOI] [PubMed] [Google Scholar]
  28. Moridani M. Y., Scobie H., Salehi P., O'Brien P. J. Catechin metabolism: glutathione conjugate formation catalyzed by tyrosinase, peroxidase, and cytochrome p450. Chem Res Toxicol. 2001 Jul;14(7):841–848. doi: 10.1021/tx000235o. [DOI] [PubMed] [Google Scholar]
  29. Mouria Michelle, Gukovskaya Anna S., Jung Yoon, Buechler Peter, Hines Oscar J., Reber Howard A., Pandol Stephen J. Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome C release and apoptosis. Int J Cancer. 2002 Apr 10;98(5):761–769. doi: 10.1002/ijc.10202. [DOI] [PubMed] [Google Scholar]
  30. Pawlikowska-Pawlega B., Gawron A. Effect of quercetin on the growth of mouse fibroblast cells in vitro. Pol J Pharmacol. 1995 Nov-Dec;47(6):531–535. [PubMed] [Google Scholar]
  31. Richter M., Ebermann R., Marian B. Quercetin-induced apoptosis in colorectal tumor cells: possible role of EGF receptor signaling. Nutr Cancer. 1999;34(1):88–99. doi: 10.1207/S15327914NC340113. [DOI] [PubMed] [Google Scholar]
  32. Rietjens I. M., Awad H. M., Boersma M. G., van Iersel M. L., Vervoort J., Van Bladeren P. J. Structure activity relationships for the chemical behaviour and toxicity of electrophilic quinones/quinone methides. Adv Exp Med Biol. 2001;500:11–21. doi: 10.1007/978-1-4615-0667-6_2. [DOI] [PubMed] [Google Scholar]
  33. Russo M., Palumbo R., Tedesco I., Mazzarella G., Russo P., Iacomino G., Russo G. L. Quercetin and anti-CD95(Fas/Apo1) enhance apoptosis in HPB-ALL cell line. FEBS Lett. 1999 Dec 3;462(3):322–328. doi: 10.1016/s0014-5793(99)01544-6. [DOI] [PubMed] [Google Scholar]
  34. Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000 Aug;130(8S):2073S–2085S. doi: 10.1093/jn/130.8.2073S. [DOI] [PubMed] [Google Scholar]
  35. Schroeter H., Spencer J. P., Rice-Evans C., Williams R. J. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochem J. 2001 Sep 15;358(Pt 3):547–557. doi: 10.1042/0264-6021:3580547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shen X. M., Dryhurst G. Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson's disease. Chem Res Toxicol. 1996 Jun;9(4):751–763. doi: 10.1021/tx960008f. [DOI] [PubMed] [Google Scholar]
  37. Shimoi K., Okada H., Furugori M., Goda T., Takase S., Suzuki M., Hara Y., Yamamoto H., Kinae N. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett. 1998 Nov 6;438(3):220–224. doi: 10.1016/s0014-5793(98)01304-0. [DOI] [PubMed] [Google Scholar]
  38. Shimoi K., Saka N., Kaji K., Nozawa R., Kinae N. Metabolic fate of luteolin and its functional activity at focal site. Biofactors. 2000;12(1-4):181–186. doi: 10.1002/biof.5520120129. [DOI] [PubMed] [Google Scholar]
  39. Shirai Mutsuko, Yamanishi Rintaro, Moon Jae-Hak, Murota Kaeko, Terao Junji. Effect of quercetin and its conjugated metabolite on the hydrogen peroxide-induced intracellular production of reactive oxygen species in mouse fibroblasts. Biosci Biotechnol Biochem. 2002 May;66(5):1015–1021. doi: 10.1271/bbb.66.1015. [DOI] [PubMed] [Google Scholar]
  40. Skaper S. D., Fabris M., Ferrari V., Dalle Carbonare M., Leon A. Quercetin protects cutaneous tissue-associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: cooperative effects of ascorbic acid. Free Radic Biol Med. 1997;22(4):669–678. doi: 10.1016/s0891-5849(96)00383-8. [DOI] [PubMed] [Google Scholar]
  41. Spencer J. P., Chowrimootoo G., Choudhury R., Debnam E. S., Srai S. K., Rice-Evans C. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 1999 Sep 17;458(2):224–230. doi: 10.1016/s0014-5793(99)01160-6. [DOI] [PubMed] [Google Scholar]
  42. Spencer J. P., Jenner P., Daniel S. E., Lees A. J., Marsden D. C., Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998 Nov;71(5):2112–2122. doi: 10.1046/j.1471-4159.1998.71052112.x. [DOI] [PubMed] [Google Scholar]
  43. Spencer J. P., Jenner P., Halliwell B. Superoxide-dependent depletion of reduced glutathione by L-DOPA and dopamine. Relevance to Parkinson's disease. Neuroreport. 1995 Jul 31;6(11):1480–1484. doi: 10.1097/00001756-199507310-00004. [DOI] [PubMed] [Google Scholar]
  44. Spencer J. P., Schroeter H., Crossthwaithe A. J., Kuhnle G., Williams R. J., Rice-Evans C. Contrasting influences of glucuronidation and O-methylation of epicatechin on hydrogen peroxide-induced cell death in neurons and fibroblasts. Free Radic Biol Med. 2001 Nov 1;31(9):1139–1146. doi: 10.1016/s0891-5849(01)00704-3. [DOI] [PubMed] [Google Scholar]
  45. Spencer J. P., Schroeter H., Kuhnle G., Srai S. K., Tyrrell R. M., Hahn U., Rice-Evans C. Epicatechin and its in vivo metabolite, 3'-O-methyl epicatechin, protect human fibroblasts from oxidative-stress-induced cell death involving caspase-3 activation. Biochem J. 2001 Mar 15;354(Pt 3):493–500. doi: 10.1042/0264-6021:3540493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Spencer Jeremy P. E., Whiteman Matthew, Jenner Peter, Halliwell Barry. 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J Neurochem. 2002 Apr;81(1):122–129. doi: 10.1046/j.1471-4159.2002.00808.x. [DOI] [PubMed] [Google Scholar]
  47. Wang I. K., Lin-Shiau S. Y., Lin J. K. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999 Oct;35(10):1517–1525. [PubMed] [Google Scholar]
  48. Wei Y. Q., Zhao X., Kariya Y., Fukata H., Teshigawara K., Uchida A. Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res. 1994 Sep 15;54(18):4952–4957. [PubMed] [Google Scholar]
  49. Yamashita N., Kawanishi S. Distinct mechanisms of DNA damage in apoptosis induced by quercetin and luteolin. Free Radic Res. 2000 Nov;33(5):623–633. doi: 10.1080/10715760000301141. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES