Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):41–52. doi: 10.1042/BJ20021894

Hormone-induced modifications of the chromatin structure surrounding upstream regulatory regions conserved between the mouse and rabbit whey acidic protein genes.

Benjamin Millot 1, Lluís Montoliu 1, Marie-Louise Fontaine 1, Teresa Mata 1, Eve Devinoy 1
PMCID: PMC1223369  PMID: 12580766

Abstract

The upstream regulatory regions of the mouse and rabbit whey acidic protein (WAP) genes have been used extensively to target the efficient expression of foreign genes into the mammary gland of transgenic animals. Therefore both regions have been studied to elucidate fully the mechanisms controlling WAP gene expression. Three DNase I-hypersensitive sites (HSS0, HSS1 and HSS2) have been described upstream of the rabbit WAP gene in the lactating mammary gland and correspond to important regulatory regions. These sites are surrounded by variable chromatin structures during mammary-gland development. In the present study, we describe the upstream sequence of the mouse WAP gene. Analysis of genomic sequences shows that the mouse WAP gene is situated between two widely expressed genes (Cpr2 and Ramp3). We show that the hypersensitive sites found upstream of the rabbit WAP gene are also detected in the mouse WAP gene. Further, they encompass functional signal transducer and activator of transcription 5-binding sites, as has been observed in the rabbit. A new hypersensitive site (HSS3), not specific to the mammary gland, was mapped 8 kb upstream of the rabbit WAP gene. Unlike the three HSSs described above, HSS3 is also detected in the liver, but similar to HSS1, it does not depend on lactogenic hormone treatments during cell culture. The region surrounding HSS3 encompasses a potential matrix attachment region, which is also conserved upstream of the mouse WAP gene and contains a functional transcription factor Ets-1 (E26 transformation-specific-1)-binding site. Finally, we demonstrate for the first time that variations in the chromatin structure are dependent on prolactin alone.

Full Text

The Full Text of this article is available as a PDF (359.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antes T. J., Namciu S. J., Fournier R. E., Levy-Wilson B. The 5' boundary of the human apolipoprotein B chromatin domain in intestinal cells. Biochemistry. 2001 Jun 12;40(23):6731–6742. doi: 10.1021/bi0100743. [DOI] [PubMed] [Google Scholar]
  2. Baranyi M., Brignon G., Anglade P., Ribadeau-Dumas B. New data on the proteins of rabbit (Oryctolagus cuniculus) milk. Comp Biochem Physiol B Biochem Mol Biol. 1995 Jul;111(3):407–415. doi: 10.1016/0305-0491(95)00008-v. [DOI] [PubMed] [Google Scholar]
  3. Beg O. U., von Bahr-Lindström H., Zaidi Z. H., Jörnvall H. A camel milk whey protein rich in half-cystine. Primary structure, assessment of variations, internal repeat patterns, and relationships with neurophysin and other active polypeptides. Eur J Biochem. 1986 Aug 15;159(1):195–201. doi: 10.1111/j.1432-1033.1986.tb09852.x. [DOI] [PubMed] [Google Scholar]
  4. Bischoff R., Degryse E., Perraud F., Dalemans W., Ali-Hadji D., Thépot D., Devinoy E., Houdebine L. M., Pavirani A. A 17.6 kbp region located upstream of the rabbit WAP gene directs high level expression of a functional human protein variant in transgenic mouse milk. FEBS Lett. 1992 Jul 6;305(3):265–268. doi: 10.1016/0014-5793(92)80683-8. [DOI] [PubMed] [Google Scholar]
  5. Burdon T. G., Maitland K. A., Clark A. J., Wallace R., Watson C. J. Regulation of the sheep beta-lactoglobulin gene by lactogenic hormones is mediated by a transcription factor that binds an interferon-gamma activation site-related element. Mol Endocrinol. 1994 Nov;8(11):1528–1536. doi: 10.1210/mend.8.11.7877621. [DOI] [PubMed] [Google Scholar]
  6. Burdon T., Sankaran L., Wall R. J., Spencer M., Hennighausen L. Expression of a whey acidic protein transgene during mammary development. Evidence for different mechanisms of regulation during pregnancy and lactation. J Biol Chem. 1991 Apr 15;266(11):6909–6914. [PubMed] [Google Scholar]
  7. Demmer J., Stasiuk S. J., Grigor M. R., Simpson K. J., Nicholas K. R. Differential expression of the whey acidic protein gene during lactation in the brushtail possum (Trichosurus vulpecula). Biochim Biophys Acta. 2001 Dec 30;1522(3):187–194. doi: 10.1016/s0167-4781(01)00334-7. [DOI] [PubMed] [Google Scholar]
  8. Devinoy E., Maliénou-N'Gassa R., Thépot D., Puissant C., Houdebine L. M. Hormone responsive elements within the upstream sequences of the rabbit whey acidic protein (WAP) gene direct chloramphenicol acetyl transferase (CAT) reporter gene expression in transfected rabbit mammary cells. Mol Cell Endocrinol. 1991 Oct;81(1-3):185–193. doi: 10.1016/0303-7207(91)90217-g. [DOI] [PubMed] [Google Scholar]
  9. Doppler W., Villunger A., Jennewein P., Brduscha K., Groner B., Ball R. K. Lactogenic hormone and cell type-specific control of the whey acidic protein gene promoter in transfected mouse cells. Mol Endocrinol. 1991 Nov;5(11):1624–1632. doi: 10.1210/mend-5-11-1624. [DOI] [PubMed] [Google Scholar]
  10. Edwards M. C., Liegeois N., Horecka J., DePinho R. A., Sprague G. F., Jr, Tyers M., Elledge S. J. Human CPR (cell cycle progression restoration) genes impart a Far- phenotype on yeast cells. Genetics. 1997 Nov;147(3):1063–1076. doi: 10.1093/genetics/147.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giamarchi C., Solanas M., Chailleux C., Augereau P., Vignon F., Rochefort H., Richard-Foy H. Chromatin structure of the regulatory regions of pS2 and cathepsin D genes in hormone-dependent and -independent breast cancer cell lines. Oncogene. 1999 Jan 14;18(2):533–541. doi: 10.1038/sj.onc.1202317. [DOI] [PubMed] [Google Scholar]
  12. Giraldo P., Montoliu L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 2001 Apr;10(2):83–103. doi: 10.1023/a:1008918913249. [DOI] [PubMed] [Google Scholar]
  13. Graves B. J., Petersen J. M. Specificity within the ets family of transcription factors. Adv Cancer Res. 1998;75:1–55. doi: 10.1016/s0065-230x(08)60738-1. [DOI] [PubMed] [Google Scholar]
  14. Hennighausen L. G., Sippel A. E. Characterization and cloning of the mRNAs specific for the lactating mouse mammary gland. Eur J Biochem. 1982 Jun 15;125(1):131–141. doi: 10.1111/j.1432-1033.1982.tb06660.x. [DOI] [PubMed] [Google Scholar]
  15. Hennighausen L. G., Sippel A. E. Mouse whey acidic protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res. 1982 Apr 24;10(8):2677–2684. doi: 10.1093/nar/10.8.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hobbs A. A., Richards D. A., Kessler D. J., Rosen J. M. Complex hormonal regulation of rat casein gene expression. J Biol Chem. 1982 Apr 10;257(7):3598–3605. [PubMed] [Google Scholar]
  17. Kang C. J., Sheridan C., Koshland M. E. A stage-specific enhancer of immunoglobulin J chain gene is induced by interleukin-2 in a presecretor B cell stage. Immunity. 1998 Mar;8(3):285–295. doi: 10.1016/s1074-7613(00)80534-8. [DOI] [PubMed] [Google Scholar]
  18. Kazansky A. V., Raught B., Lindsey S. M., Wang Y. F., Rosen J. M. Regulation of mammary gland factor/Stat5a during mammary gland development. Mol Endocrinol. 1995 Nov;9(11):1598–1609. doi: 10.1210/mend.9.11.8584036. [DOI] [PubMed] [Google Scholar]
  19. Krnacik M. J., Li S., Liao J., Rosen J. M. Position-independent expression of whey acidic protein transgenes. J Biol Chem. 1995 May 12;270(19):11119–11129. doi: 10.1074/jbc.270.19.11119. [DOI] [PubMed] [Google Scholar]
  20. Lee T. H., Kim S. J., Han Y. M., Yu D. Y., Lee C. S., Choi Y. J., Moon H. B., Baik M. G., Lee K. K. Matrix attachment region sequences enhanced the expression frequency of a whey acidic protein/human lactoferrin fusion gene in the mammary gland of transgenic mice. Mol Cells. 1998 Oct 31;8(5):530–536. [PubMed] [Google Scholar]
  21. Li Q., Zhang M., Duan Z., Stamatoyannopoulos G. Structural analysis and mapping of DNase I hypersensitivity of HS5 of the beta-globin locus control region. Genomics. 1999 Oct 15;61(2):183–193. doi: 10.1006/geno.1999.5954. [DOI] [PubMed] [Google Scholar]
  22. Li S., Rosen J. M. Distal regulatory elements required for rat whey acidic protein gene expression in transgenic mice. J Biol Chem. 1994 May 13;269(19):14235–14243. [PubMed] [Google Scholar]
  23. Maroulakou I. G., Bowe D. B. Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene. 2000 Dec 18;19(55):6432–6442. doi: 10.1038/sj.onc.1204039. [DOI] [PubMed] [Google Scholar]
  24. McKnight R. A., Spencer M., Dittmer J., Brady J. N., Wall R. J., Hennighausen L. An Ets site in the whey acidic protein gene promoter mediates transcriptional activation in the mammary gland of pregnant mice but is dispensable during lactation. Mol Endocrinol. 1995 Jun;9(6):717–724. doi: 10.1210/mend.9.6.8592517. [DOI] [PubMed] [Google Scholar]
  25. McKnight R. A., Spencer M., Wall R. J., Hennighausen L. Severe position effects imposed on a 1 kb mouse whey acidic protein gene promoter are overcome by heterologous matrix attachment regions. Mol Reprod Dev. 1996 Jun;44(2):179–184. doi: 10.1002/(SICI)1098-2795(199606)44:2<179::AID-MRD6>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  26. McLatchie L. M., Fraser N. J., Main M. J., Wise A., Brown J., Thompson N., Solari R., Lee M. G., Foord S. M. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998 May 28;393(6683):333–339. doi: 10.1038/30666. [DOI] [PubMed] [Google Scholar]
  27. Millot B., Fontaine M. L., Thepot D., Devinoy E. A distal region, hypersensitive to DNase I, plays a key role in regulating rabbit whey acidic protein gene expression. Biochem J. 2001 Nov 1;359(Pt 3):557–565. doi: 10.1042/0264-6021:3590557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Montoliu Lluís. Gene transfer strategies in animal transgenesis. Cloning Stem Cells. 2002;4(1):39–46. doi: 10.1089/153623002753632039. [DOI] [PubMed] [Google Scholar]
  29. Paleyanda R. K., Zhang D. W., Hennighausen L., McKnight R. A., Lubon H. Regulation of human protein C gene expression by the mouse WAP promoter. Transgenic Res. 1994 Nov;3(6):335–343. doi: 10.1007/BF01976765. [DOI] [PubMed] [Google Scholar]
  30. Pena R. N., Folch J. M., Sánchez A., Whitelaw C. B. Chromatin structures of goat and sheep beta-lactoglobulin gene differ. Biochem Biophys Res Commun. 1998 Nov 27;252(3):649–653. doi: 10.1006/bbrc.1998.9718. [DOI] [PubMed] [Google Scholar]
  31. Prioleau M. N., Nony P., Simpson M., Felsenfeld G. An insulator element and condensed chromatin region separate the chicken beta-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 1999 Jul 15;18(14):4035–4048. doi: 10.1093/emboj/18.14.4035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Razin S. V., Shen K., Ioudinkova E., Scherrer K. Functional analysis of DNA sequences located within a cluster of DNase I hypersensitive sites colocalizing with a MAR element at the upstream border of the chicken alpha-globin gene domain. J Cell Biochem. 1999 Jul 1;74(1):38–49. [PubMed] [Google Scholar]
  33. Schoenenberger C. A., Zuk A., Groner B., Jones W., Andres A. C. Induction of the endogenous whey acidic protein (Wap) gene and a Wap-myc hybrid gene in primary murine mammary organoids. Dev Biol. 1990 Jun;139(2):327–337. doi: 10.1016/0012-1606(90)90302-y. [DOI] [PubMed] [Google Scholar]
  34. Shepherd T., Hassell J. A. Role of Ets transcription factors in mammary gland development and oncogenesis. J Mammary Gland Biol Neoplasia. 2001 Jan;6(1):129–140. doi: 10.1023/a:1009576801226. [DOI] [PubMed] [Google Scholar]
  35. Simar-Blanchet A. E., Legraverend C., Thissen J. P., Le Cam A. Transcription of the rat serine protease inhibitor 2.1 gene in vivo: correlation with GAGA box promoter occupancy and mechanism of cytokine-mediated down-regulation. Mol Endocrinol. 1998 Mar;12(3):391–404. doi: 10.1210/mend.12.3.0080. [DOI] [PubMed] [Google Scholar]
  36. Simpson K. J., Bird P., Shaw D., Nicholas K. Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein gene. J Mol Endocrinol. 1998 Feb;20(1):27–35. doi: 10.1677/jme.0.0200027. [DOI] [PubMed] [Google Scholar]
  37. Thépot D., Devinoy E., Fontaine M. L., Stinnakre M. G., Massoud M., Kann G., Houdebine L. M. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice. Mol Reprod Dev. 1995 Nov;42(3):261–267. doi: 10.1002/mrd.1080420302. [DOI] [PubMed] [Google Scholar]
  38. Welte T., Garimorth K., Philipp S., Jennewein P., Huck C., Cato A. C., Doppler W. Involvement of Ets-related proteins in hormone-independent mammary cell-specific gene expression. Eur J Biochem. 1994 Aug 1;223(3):997–1006. doi: 10.1111/j.1432-1033.1994.tb19078.x. [DOI] [PubMed] [Google Scholar]
  39. Whitelaw C. B., Harris S., McClenaghan M., Simons J. P., Clark A. J. Position-independent expression of the ovine beta-lactoglobulin gene in transgenic mice. Biochem J. 1992 Aug 15;286(Pt 1):31–39. doi: 10.1042/bj2860031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whitelaw C. B. Hormonal influences on beta-lactoglobulin transgene expression inferred from chromatin structure. Biochem Biophys Res Commun. 1996 Jul 5;224(1):121–125. doi: 10.1006/bbrc.1996.0994. [DOI] [PubMed] [Google Scholar]
  41. Whitelaw C. B., Webster J. Temporal profiles of appearance of DNase I hypersensitive sites associated with the ovine beta-lactoglobulin gene differ in sheep and transgenic mice. Mol Gen Genet. 1998 Apr;257(6):649–654. doi: 10.1007/s004380050693. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES