Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):77–86. doi: 10.1042/BJ20021700

Mannose metabolism is required for mycobacterial growth.

John H Patterson 1, Ross F Waller 1, Dharshini Jeevarajah 1, Helen Billman-Jacobe 1, Malcolm J McConville 1
PMCID: PMC1223379  PMID: 12593673

Abstract

Mycobacteria are the causative agents of tuberculosis and several other significant diseases in humans. All species of mycobacteria synthesize abundant cell-wall mannolipids (phosphatidylinositol mannosides, lipoarabinomannan), a cytoplasmic methylmannose polysaccharide and O-mannosylated glycoproteins. To investigate whether these molecules are essential for mycobacterial growth, we have generated a Mycobacterium smegmatis mannose auxotroph by targeted deletion of the gene encoding phosphomannose isomerase (PMI). The PMI deletion mutant displayed a mild hyperseptation phenotype, but grew normally in media containing an exogenous source of mannose. When this mutant was suspended in media without mannose, ongoing synthesis of both the mannolipids and methylmannose polysaccharides was halted and the hyperseptation phenotype became more pronounced. These changes preceded a dramatic loss of viability after 10 h in mannose-free media. Mannose starvation did not lead to detectable changes in cell-wall ultrastructure or permeability to hydrophobic drugs, or to changes in the rate of biosynthesis of other plasma-membrane or wall-associated phospholipids. These results show that mannose metabolism is required for growth of M. smegmatis and that one or more mannose-containing molecules may play a role in regulating septation and cell division in these bacteria.

Full Text

The Full Text of this article is available as a PDF (338.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banis R. J., Peterson D. O., Bloch K. Mycobacterium smegmatis fatty acid synthetase. Polysaccharide stimulation of the rate-limiting step. J Biol Chem. 1977 Aug 25;252(16):5740–5744. [PubMed] [Google Scholar]
  2. Billman-Jacobe H., McConville M. J., Haites R. E., Kovacevic S., Coppel R. L. Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol Microbiol. 1999 Sep;33(6):1244–1253. doi: 10.1046/j.1365-2958.1999.01572.x. [DOI] [PubMed] [Google Scholar]
  3. Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee D., Khoo K. H. Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology. 1998 Feb;8(2):113–120. doi: 10.1093/glycob/8.2.113. [DOI] [PubMed] [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., Barry C. E., 3rd Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998 Jun 11;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  6. Cooper Howard N., Gurcha Sudagar S., Nigou Jérôme, Brennan Patrick J., Belisle John T., Besra Gurdyal S., Young Douglas. Characterization of mycobacterial protein glycosyltransferase activity using synthetic peptide acceptors in a cell-free assay. Glycobiology. 2002 Jul;12(7):427–434. doi: 10.1093/glycob/cwf051. [DOI] [PubMed] [Google Scholar]
  7. Daffé M., Etienne G. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis. 1999;79(3):153–169. doi: 10.1054/tuld.1998.0200. [DOI] [PubMed] [Google Scholar]
  8. Dmitriev B. A., Ehlers S., Rietschel E. T., Brennan P. J. Molecular mechanics of the mycobacterial cell wall: from horizontal layers to vertical scaffolds. Int J Med Microbiol. 2000 Jul;290(3):251–258. doi: 10.1016/S1438-4221(00)80122-8. [DOI] [PubMed] [Google Scholar]
  9. Dobos K. M., Khoo K. H., Swiderek K. M., Brennan P. J., Belisle J. T. Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J Bacteriol. 1996 May;178(9):2498–2506. doi: 10.1128/jb.178.9.2498-2506.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dobos K. M., Swiderek K., Khoo K. H., Brennan P. J., Belisle J. T. Evidence for glycosylation sites on the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. Infect Immun. 1995 Aug;63(8):2846–2853. doi: 10.1128/iai.63.8.2846-2853.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ernst W. A., Maher J., Cho S., Niazi K. R., Chatterjee D., Moody D. B., Besra G. S., Watanabe Y., Jensen P. E., Porcelli S. A. Molecular interaction of CD1b with lipoglycan antigens. Immunity. 1998 Mar;8(3):331–340. doi: 10.1016/s1074-7613(00)80538-5. [DOI] [PubMed] [Google Scholar]
  12. Escuyer V. E., Lety M. A., Torrelles J. B., Khoo K. H., Tang J. B., Rithner C. D., Frehel C., McNeil M. R., Brennan P. J., Chatterjee D. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem. 2001 Oct 24;276(52):48854–48862. doi: 10.1074/jbc.M102272200. [DOI] [PubMed] [Google Scholar]
  13. Garami A., Ilg T. The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. J Biol Chem. 2000 Nov 17;276(9):6566–6575. doi: 10.1074/jbc.M009226200. [DOI] [PubMed] [Google Scholar]
  14. Gilleron M., Nigou J., Cahuzac B., Puzo G. Structural study of the lipomannans from Mycobacterium bovis BCG: characterisation of multiacylated forms of the phosphatidyl-myo-inositol anchor. J Mol Biol. 1999 Feb 5;285(5):2147–2160. doi: 10.1006/jmbi.1998.2438. [DOI] [PubMed] [Google Scholar]
  15. Gurcha Sudagar S., Baulard Alain R., Kremer Laurent, Locht Camille, Moody D. Branch, Muhlecker Walter, Costello Catherine E., Crick Dean C., Brennan Patrick J., Besra Gurdyal S. Ppm1, a novel polyprenol monophosphomannose synthase from Mycobacterium tuberculosis. Biochem J. 2002 Jul 15;365(Pt 2):441–450. doi: 10.1042/BJ20020107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henry R. J., Blakeney A. B., Harris P. J., Stone B. A. Detection of neutral and aminosugars from glycoproteins and polysaccharides as their alditol acetates. J Chromatogr. 1983 Feb 18;256(3):419–427. doi: 10.1016/s0021-9673(01)88259-5. [DOI] [PubMed] [Google Scholar]
  17. Jackson M., Crick D. C., Brennan P. J. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem. 2000 Sep 29;275(39):30092–30099. doi: 10.1074/jbc.M004658200. [DOI] [PubMed] [Google Scholar]
  18. Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J Biol Chem. 1995 May 26;270(21):12380–12389. doi: 10.1074/jbc.270.21.12380. [DOI] [PubMed] [Google Scholar]
  19. Khoo K. H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology. 1995 Feb;5(1):117–127. doi: 10.1093/glycob/5.1.117. [DOI] [PubMed] [Google Scholar]
  20. Korduláková Jana, Gilleron Martine, Mikusova Katarína, Puzo Germain, Brennan Patrick J., Gicquel Brigitte, Jackson Mary. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. PimA is essential for growth of mycobacteria. J Biol Chem. 2002 Jun 14;277(35):31335–31344. doi: 10.1074/jbc.M204060200. [DOI] [PubMed] [Google Scholar]
  21. Kremer Laurent, Gurcha Sudagar S., Bifani Pablo, Hitchen Paul G., Baulard Alain, Morris Howard R., Dell Anne, Brennan Patrick J., Besra Gurdyal S. Characterization of a putative alpha-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem J. 2002 May 1;363(Pt 3):437–447. doi: 10.1042/0264-6021:3630437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maitra S. K., Ballou C. E. Heterogeneity and refined structtures of 3-O-methyl-D-mannose polysaccharides from Mycobacterium smegmatis. J Biol Chem. 1977 Apr 25;252(8):2459–2469. [PubMed] [Google Scholar]
  23. Maloney D. H., Ballou C. E. Polymethylpolysaccharide synthesis in an ethionine-resistant mutant of Mycobacterium smegmatis. J Bacteriol. 1980 Mar;141(3):1217–1221. doi: 10.1128/jb.141.3.1217-1221.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyers P. R., Bourn W. R., Steyn L. M., van Helden P. D., Beyers A. D., Brown G. D. Novel method for rapid measurement of growth of mycobacteria in detergent-free media. J Clin Microbiol. 1998 Sep;36(9):2752–2754. doi: 10.1128/jcm.36.9.2752-2754.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ozanne V., Ortalo-Magne A., Vercellone A., Fournie J. J., Daffe M. Cytometric detection of mycobacterial surface antigens: exposure of mannosyl epitopes and of the arabinan segment of arabinomannans. J Bacteriol. 1996 Dec;178(24):7254–7259. doi: 10.1128/jb.178.24.7254-7259.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parish T., Liu J., Nikaido H., Stoker N. G. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J Bacteriol. 1997 Dec;179(24):7827–7833. doi: 10.1128/jb.179.24.7827-7833.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parrish N. M., Houston T., Jones P. B., Townsend C., Dick J. D. In vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob Agents Chemother. 2001 Apr;45(4):1143–1150. doi: 10.1128/AAC.45.4.1143-1150.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peterson D. O., Bloch K. Mycobacterium smegmatis fatty acid synthetase. Long chain transacylase chain length specificity. J Biol Chem. 1977 Aug 25;252(16):5735–5739. [PubMed] [Google Scholar]
  29. Prentki P., Krisch H. M. In vitro insertional mutagenesis with a selectable DNA fragment. Gene. 1984 Sep;29(3):303–313. doi: 10.1016/0378-1119(84)90059-3. [DOI] [PubMed] [Google Scholar]
  30. Russell David G., Mwandumba Henry C., Rhoades Elizabeth E. Mycobacterium and the coat of many lipids. J Cell Biol. 2002 Jul 29;158(3):421–426. doi: 10.1083/jcb.200205034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schaeffer M. L., Khoo K. H., Besra G. S., Chatterjee D., Brennan P. J., Belisle J. T., Inamine J. M. The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesis. J Biol Chem. 1999 Oct 29;274(44):31625–31631. doi: 10.1074/jbc.274.44.31625. [DOI] [PubMed] [Google Scholar]
  32. Schneider P., Ralton J. E., McConville M. J., Ferguson M. A. Analysis of the neutral glycan fractions of glycosyl-phosphatidylinositols by thin-layer chromatography. Anal Biochem. 1993 Apr;210(1):106–112. doi: 10.1006/abio.1993.1158. [DOI] [PubMed] [Google Scholar]
  33. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R., Jr Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990 Nov;4(11):1911–1919. doi: 10.1111/j.1365-2958.1990.tb02040.x. [DOI] [PubMed] [Google Scholar]
  34. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  35. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H., Hatfull G. F. New use of BCG for recombinant vaccines. Nature. 1991 Jun 6;351(6326):456–460. doi: 10.1038/351456a0. [DOI] [PubMed] [Google Scholar]
  36. Weisman L. S., Ballou C. E. Biosynthesis of the mycobacterial methylmannose polysaccharide. Identification of a 3-O-methyltransferase. J Biol Chem. 1984 Mar 25;259(6):3464–3469. [PubMed] [Google Scholar]
  37. Yabusaki K. K., Cohen R. E., Ballou C. E. Conformational changes associated with complex formation between a mycobacterial polymethylpolysaccharide and palmitic acid. J Biol Chem. 1979 Aug 10;254(15):7282–7286. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES