Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):97–104. doi: 10.1042/BJ20021645

Characterization of SUMO-conjugating enzyme mutants in Schizosaccharomyces pombe identifies a dominant-negative allele that severely reduces SUMO conjugation.

Jenny C Y Ho 1, Felicity Z Watts 1
PMCID: PMC1223380  PMID: 12597774

Abstract

The phenotypes of mutants defective in the Schizosaccharomyces pombe SUMO (small, ubiquitin-like modifier)-conjugating enzyme Hus5 (the homologue of Ubc9) show that it is required for recovery from S-phase arrest. Unlike the case with ubiquitination, where ligases are required, SUMO-conjugating enzymes are sufficient for substrate recognition and conjugation of SUMO on to target proteins, at least in vitro. Thus SUMO-conjugating enzymes are likely to be important regulators of sumoylation. Here, we report on the characterization of two hus5 alleles. Although hus5.17 and hus5.62 respond in a similar manner to UV and ionizing radiation, they have different responses to the DNA-synthesis inhibitor, hydroxyurea. In addition, SUMO (Pmt3) is mislocalized in hus5.17 cells, but not in hus5.62 mutant cells. The mutations in hus5.62 and hus5.17 map to Ala(129) and the 5' splice site of intron 2 respectively. We have characterized the Hus5.62 protein and shown, in vitro, that it still interacts with SUMO and at least one protein, Rad22, which is a SUMO-modified target. The Hus5.62 protein is also capable of forming a thioester link with SUMO, but it does not function in sumoylation assays, either in the modification of Rad22 or in SUMO chain formation. When overexpressed in wild-type S. pombe cells, the Hus5.62 protein has a dominant-negative effect on sumoylation.

Full Text

The Full Text of this article is available as a PDF (230.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basi G., Schmid E., Maundrell K. TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene. 1993 Jan 15;123(1):131–136. doi: 10.1016/0378-1119(93)90552-e. [DOI] [PubMed] [Google Scholar]
  2. Bernier-Villamor Victor, Sampson Deborah A., Matunis Michael J., Lima Christopher D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell. 2002 Feb 8;108(3):345–356. doi: 10.1016/s0092-8674(02)00630-x. [DOI] [PubMed] [Google Scholar]
  3. Caspari T., Dahlen M., Kanter-Smoler G., Lindsay H. D., Hofmann K., Papadimitriou K., Sunnerhagen P., Carr A. M. Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol Cell Biol. 2000 Feb;20(4):1254–1262. doi: 10.1128/mcb.20.4.1254-1262.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. David Gregory, Neptune Mychell A., DePinho Ronald A. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem. 2002 Apr 17;277(26):23658–23663. doi: 10.1074/jbc.M203690200. [DOI] [PubMed] [Google Scholar]
  5. Desterro J. M., Rodriguez M. S., Hay R. T. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998 Aug;2(2):233–239. doi: 10.1016/s1097-2765(00)80133-1. [DOI] [PubMed] [Google Scholar]
  6. Desterro J. M., Thomson J., Hay R. T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 1997 Nov 17;417(3):297–300. doi: 10.1016/s0014-5793(97)01305-7. [DOI] [PubMed] [Google Scholar]
  7. Gostissa M., Hengstermann A., Fogal V., Sandy P., Schwarz S. E., Scheffner M., Del Sal G. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 1999 Nov 15;18(22):6462–6471. doi: 10.1093/emboj/18.22.6462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hardeland Ulrike, Steinacher Roland, Jiricny Josef, Schär Primo. Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 2002 Mar 15;21(6):1456–1464. doi: 10.1093/emboj/21.6.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hay R. T. Protein modification by SUMO. Trends Biochem Sci. 2001 May;26(5):332–333. doi: 10.1016/s0968-0004(01)01849-7. [DOI] [PubMed] [Google Scholar]
  10. Ho J. C., Warr N. J., Shimizu H., Watts F. Z. SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res. 2001 Oct 15;29(20):4179–4186. doi: 10.1093/nar/29.20.4179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ishov A. M., Sotnikov A. G., Negorev D., Vladimirova O. V., Neff N., Kamitani T., Yeh E. T., Strauss J. F., 3rd, Maul G. G. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J Cell Biol. 1999 Oct 18;147(2):221–234. doi: 10.1083/jcb.147.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson E. S., Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem. 1997 Oct 24;272(43):26799–26802. doi: 10.1074/jbc.272.43.26799. [DOI] [PubMed] [Google Scholar]
  13. Johnson E. S., Gupta A. A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell. 2001 Sep 21;106(6):735–744. doi: 10.1016/s0092-8674(01)00491-3. [DOI] [PubMed] [Google Scholar]
  14. Johnson E. S., Schwienhorst I., Dohmen R. J., Blobel G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 1997 Sep 15;16(18):5509–5519. doi: 10.1093/emboj/16.18.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kamitani T., Kito K., Nguyen H. P., Wada H., Fukuda-Kamitani T., Yeh E. T. Identification of three major sentrinization sites in PML. J Biol Chem. 1998 Oct 9;273(41):26675–26682. doi: 10.1074/jbc.273.41.26675. [DOI] [PubMed] [Google Scholar]
  16. Kirsh Olivier, Seeler Jacob-S, Pichler Andrea, Gast Andreas, Müller Stefan, Miska Eric, Mathieu Marion, Harel-Bellan Annick, Kouzarides Tony, Melchior Frauke. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J. 2002 Jun 3;21(11):2682–2691. doi: 10.1093/emboj/21.11.2682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lin Donghai, Tatham Michael H., Yu Bin, Kim Suhkmann, Hay Ronald T., Chen Yuan. Identification of a substrate recognition site on Ubc9. J Biol Chem. 2002 Mar 4;277(24):21740–21748. doi: 10.1074/jbc.M108418200. [DOI] [PubMed] [Google Scholar]
  18. Mahajan R., Delphin C., Guan T., Gerace L., Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell. 1997 Jan 10;88(1):97–107. doi: 10.1016/s0092-8674(00)81862-0. [DOI] [PubMed] [Google Scholar]
  19. Matunis M. J., Coutavas E., Blobel G. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol. 1996 Dec;135(6 Pt 1):1457–1470. doi: 10.1083/jcb.135.6.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moreno S., Klar A., Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823. doi: 10.1016/0076-6879(91)94059-l. [DOI] [PubMed] [Google Scholar]
  21. Murray J. M., Doe C. L., Schenk P., Carr A. M., Lehmann A. R., Watts F. Z. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucleic Acids Res. 1992 Jun 11;20(11):2673–2678. doi: 10.1093/nar/20.11.2673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rodriguez M. S., Desterro J. M., Lain S., Midgley C. A., Lane D. P., Hay R. T. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999 Nov 15;18(22):6455–6461. doi: 10.1093/emboj/18.22.6455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Saitoh Hisato, Pizzi Maryann Delli, Wang Jian. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J Biol Chem. 2001 Nov 14;277(7):4755–4763. doi: 10.1074/jbc.M104453200. [DOI] [PubMed] [Google Scholar]
  24. Schmidt Darja, Müller Stefan. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A. 2002 Feb 26;99(5):2872–2877. doi: 10.1073/pnas.052559499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schwarz S. E., Matuschewski K., Liakopoulos D., Scheffner M., Jentsch S. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):560–564. doi: 10.1073/pnas.95.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seufert W., Futcher B., Jentsch S. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature. 1995 Jan 5;373(6509):78–81. doi: 10.1038/373078a0. [DOI] [PubMed] [Google Scholar]
  27. Shayeghi M., Doe C. L., Tavassoli M., Watts F. Z. Characterisation of Schizosaccharomyces pombe rad31, a UBA-related gene required for DNA damage tolerance. Nucleic Acids Res. 1997 Mar 15;25(6):1162–1169. doi: 10.1093/nar/25.6.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sternsdorf T., Jensen K., Will H. Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol. 1997 Dec 29;139(7):1621–1634. doi: 10.1083/jcb.139.7.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanaka K., Nishide J., Okazaki K., Kato H., Niwa O., Nakagawa T., Matsuda H., Kawamukai M., Murakami Y. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol Cell Biol. 1999 Dec;19(12):8660–8672. doi: 10.1128/mcb.19.12.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taylor Deborah L., Ho Jenny C. Y., Oliver Alejandro, Watts Felicity Z. Cell-cycle-dependent localisation of Ulp1, a Schizosaccharomyces pombe Pmt3 (SUMO)-specific protease. J Cell Sci. 2002 Mar 15;115(Pt 6):1113–1122. doi: 10.1242/jcs.115.6.1113. [DOI] [PubMed] [Google Scholar]
  31. Tong H., Hateboer G., Perrakis A., Bernards R., Sixma T. K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J Biol Chem. 1997 Aug 22;272(34):21381–21387. doi: 10.1074/jbc.272.34.21381. [DOI] [PubMed] [Google Scholar]
  32. al-Khodairy F., Enoch T., Hagan I. M., Carr A. M. The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis. J Cell Sci. 1995 Feb;108(Pt 2):475–486. doi: 10.1242/jcs.108.2.475. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES