Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 2003 May 15;372(Pt 1):247–252. doi: 10.1042/BJ20030044

Transmembrane segments 1, 5, 7 and 8 are required for high-affinity glucose transport by Saccharomyces cerevisiae Hxt2 transporter.

Toshiko Kasahara 1, Michihiro Kasahara 1
PMCID: PMC1223383  PMID: 12603199

Abstract

Hxt2 is a high-affinity facilitative glucose transporter of Saccharomyces cerevisiae and belongs to the major facilitator superfamily. Hxt1 shares approximately 70% amino acid identity with Hxt2 in its transmembrane segments (TMs) and inter-TM loops, but transports D-glucose with an affinity about one-tenth of that of Hxt2. To determine which TMs of Hxt2 are important for high-affinity glucose transport, we constructed chimaeras of Hxt2 and Hxt1 by randomly replacing each of the 12 TMs of Hxt2 with the corresponding segment of Hxt1, for a total of 4096 different transporters. Among > 20000 yeast transformants screened, 39 different clones were selected by plate assays of high-affinity glucose-transport activity and sequenced. With only two exceptions, the selected chimaeras contained Hxt2 TMs 1, 5, 7 and 8. We then constructed chimaeras corresponding to all 16 possible combinations of Hxt2 TMs 1, 5, 7 and 8. Only one chimaera, namely that containing all four Hxt2 TMs, exhibited transport activity comparable with that of Hxt2. The K (m) and V (max) values for D-glucose transport, and the substrate specificity of this chimaera were almost identical with those of Hxt2. These results indicate that TMs 1, 5, 7 and 8 are necessary for exhibiting high-affinity glucose-transport activity of Hxt2.

Full Text

The Full Text of this article is available as a PDF (153.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin S. A. Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta. 1993 Jun 8;1154(1):17–49. doi: 10.1016/0304-4157(93)90015-g. [DOI] [PubMed] [Google Scholar]
  2. Barrett M. P., Walmsley A. R., Gould G. W. Structure and function of facilitative sugar transporters. Curr Opin Cell Biol. 1999 Aug;11(4):496–502. doi: 10.1016/s0955-0674(99)80072-6. [DOI] [PubMed] [Google Scholar]
  3. Boles E., Hollenberg C. P. The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev. 1997 Aug;21(1):85–111. doi: 10.1111/j.1574-6976.1997.tb00346.x. [DOI] [PubMed] [Google Scholar]
  4. Busch Wolfgang, Saier Milton H., Jr The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol. 2002;37(5):287–337. doi: 10.1080/10409230290771528. [DOI] [PubMed] [Google Scholar]
  5. Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
  6. Doege H., Schürmann A., Ohnimus H., Monser V., Holman G. D., Joost H. G. Serine-294 and threonine-295 in the exofacial loop domain between helices 7 and 8 of glucose transporters (GLUT) are involved in the conformational alterations during the transport process. Biochem J. 1998 Jan 15;329(Pt 2):289–293. doi: 10.1042/bj3290289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  8. Fu D., Libson A., Miercke L. J., Weitzman C., Nollert P., Krucinski J., Stroud R. M. Structure of a glycerol-conducting channel and the basis for its selectivity. Science. 2000 Oct 20;290(5491):481–486. doi: 10.1126/science.290.5491.481. [DOI] [PubMed] [Google Scholar]
  9. Henderson P. J., Maiden M. C. Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. Philos Trans R Soc Lond B Biol Sci. 1990 Jan 30;326(1236):391–410. doi: 10.1098/rstb.1990.0020. [DOI] [PubMed] [Google Scholar]
  10. Hirai Teruhisa, Heymann Jürgen A. W., Shi Dan, Sarker Rafiquel, Maloney Peter C., Subramaniam Sriram. Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol. 2002 Aug;9(8):597–600. doi: 10.1038/nsb821. [DOI] [PubMed] [Google Scholar]
  11. Hruz P. W., Mueckler M. M. Structural analysis of the GLUT1 facilitative glucose transporter (review). Mol Membr Biol. 2001 Jul-Sep;18(3):183–193. doi: 10.1080/09687680110072140. [DOI] [PubMed] [Google Scholar]
  12. Kasahara M., Maeda M. Contribution to substrate recognition of two aromatic amino acid residues in putative transmembrane segment 10 of the yeast sugar transporters Gal2 and Hxt2. J Biol Chem. 1998 Oct 30;273(44):29106–29112. doi: 10.1074/jbc.273.44.29106. [DOI] [PubMed] [Google Scholar]
  13. Kasahara M., Shimoda E., Maeda M. Amino acid residues responsible for galactose recognition in yeast Gal2 transporter. J Biol Chem. 1997 Jul 4;272(27):16721–16724. doi: 10.1074/jbc.272.27.16721. [DOI] [PubMed] [Google Scholar]
  14. Kasahara M., Shimoda E., Maeda M. Transmembrane segment 10 is important for substrate recognition in Ga12 and Hxt2 sugar transporters in the yeast Saccharomyces cerevisiae. FEBS Lett. 1996 Jul 1;389(2):174–178. doi: 10.1016/0014-5793(96)00567-4. [DOI] [PubMed] [Google Scholar]
  15. Kasahara T., Kasahara M. Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Biochem J. 1996 Apr 1;315(Pt 1):177–182. doi: 10.1042/bj3150177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kasahara T., Kasahara M. Interaction between the critical aromatic amino acid residues Tyr(352) and Phe(504) in the yeast Gal2 transporter. FEBS Lett. 2000 Apr 7;471(1):103–107. doi: 10.1016/s0014-5793(00)01371-5. [DOI] [PubMed] [Google Scholar]
  17. Kasahara T., Kasahara M. Three aromatic amino acid residues critical for galactose transport in yeast Gal2 transporter. J Biol Chem. 2000 Feb 11;275(6):4422–4428. doi: 10.1074/jbc.275.6.4422. [DOI] [PubMed] [Google Scholar]
  18. Kawabe T., Yamaguchi A. Transmembrane remote conformational suppression of the Gly-332 mutation of the Tn10-encoded metal-tetracycline/H+ antiporter. FEBS Lett. 1999 Aug 20;457(1):169–173. doi: 10.1016/s0014-5793(99)01032-7. [DOI] [PubMed] [Google Scholar]
  19. Kruckeberg A. L., Bisson L. F. The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol. 1990 Nov;10(11):5903–5913. doi: 10.1128/mcb.10.11.5903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mueckler M., Caruso C., Baldwin S. A., Panico M., Blench I., Morris H. R., Allard W. J., Lienhard G. E., Lodish H. F. Sequence and structure of a human glucose transporter. Science. 1985 Sep 6;229(4717):941–945. doi: 10.1126/science.3839598. [DOI] [PubMed] [Google Scholar]
  21. Murata K., Mitsuoka K., Hirai T., Walz T., Agre P., Heymann J. B., Engel A., Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1. Nature. 2000 Oct 5;407(6804):599–605. doi: 10.1038/35036519. [DOI] [PubMed] [Google Scholar]
  22. Nishizawa K., Shimoda E., Kasahara M. Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters. J Biol Chem. 1995 Feb 10;270(6):2423–2426. doi: 10.1074/jbc.270.6.2423. [DOI] [PubMed] [Google Scholar]
  23. Pao S. S., Paulsen I. T., Saier M. H., Jr Major facilitator superfamily. Microbiol Mol Biol Rev. 1998 Mar;62(1):1–34. doi: 10.1128/mmbr.62.1.1-34.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  25. Sorgen Paul L., Hu Yonglin, Guan Lan, Kaback H. Ronald, Girvin Mark E. An approach to membrane protein structure without crystals. Proc Natl Acad Sci U S A. 2002 Oct 21;99(22):14037–14040. doi: 10.1073/pnas.182552199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tamura N., Konishi S., Iwaki S., Kimura-Someya T., Nada S., Yamaguchi A. Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J Biol Chem. 2001 Feb 6;276(23):20330–20339. doi: 10.1074/jbc.M007993200. [DOI] [PubMed] [Google Scholar]
  27. Toyoshima C., Nakasako M., Nomura H., Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature. 2000 Jun 8;405(6787):647–655. doi: 10.1038/35015017. [DOI] [PubMed] [Google Scholar]
  28. Vernet T., Dignard D., Thomas D. Y. A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 1987;52(2-3):225–233. doi: 10.1016/0378-1119(87)90049-7. [DOI] [PubMed] [Google Scholar]
  29. Will A., Grassl R., Erdmenger J., Caspari T., Tanner W. Alteration of substrate affinities and specificities of the Chlorella Hexose/H+ symporters by mutations and construction of chimeras. J Biol Chem. 1998 May 8;273(19):11456–11462. doi: 10.1074/jbc.273.19.11456. [DOI] [PubMed] [Google Scholar]
  30. Wright Ernest M., Turk Eric, Martin Martin G. Molecular basis for glucose-galactose malabsorption. Cell Biochem Biophys. 2002;36(2-3):115–121. doi: 10.1385/CBB:36:2-3:115. [DOI] [PubMed] [Google Scholar]
  31. Ye L., Kruckeberg A. L., Berden J. A., van Dam K. Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter. J Bacteriol. 1999 Aug;181(15):4673–4675. doi: 10.1128/jb.181.15.4673-4675.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES